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Chapter 1

Vectors and Matrices

Often, in dealing with real-word problems, we are immediately met with large amounts of data and

information. Even an activity as simple as baking a cake requires many ingredients and steps that

must be completed in careful order, and the complexity of a task may grow exponentially as the

number of inputs increases. One way to efficiently organize data is according to rows and columns

in what we will refer to as vectors and matrices. We will demonstrate in this chapter that vectors

and matrices admit an arithmetic that yields a highly sophisticated and widely applicable theory.

1.1 Real n-Space

Consider the set R consisting of real numbers. Like usual, we may geometrically realize R as a line

(the real number line) consisting of points x that lie a distance of |x| from the origin 0 for each

real number x. Explicitly, the point π lies π units to the right of the origin, whereas the point −e

lies e units to the left of the origin. Given any pair of real numbers a ≤ b, the distance between the

points a and b along the real number line is given by the length of the closed interval [a, b]; we learn

in Calculus I that this distance is exactly the real number b − a. Consequently, the real numbers

R admit a notion of geometry since we can conceive of things like lines and distances. Below is a

visual representation of the real number line with the points −e, 0, and π plotted for reference.

R0−e π

Observe that forward and backward are the only two directions along the real number line, hence

the geometry of R is in this sense quite simple. On the other hand, suppose that we want to keep

track of both east-west movement and north-south movement. Given that an object lies x units from

the origin in the east-west direction and y units in the north-south direction, we may canonically

express this data as an ordered pair (x, y). Explicitly, if a particle lies 1 unit west and 2 units north

of the origin (0, 0), then it lies 1 unit to the left of the origin on the x-axis and 2 units north of the

origin on the y-axis; the location of the particle in this case can be written as the ordered pair (−1, 2).

We refer to the collection of all ordered pairs of real numbers (x, y) as the Cartesian product

R×R of the real numbers with itself, i.e., we have that R×R = {(x, y) | x and y are real numbers}.
Graphically, the totality of points in R × R form a plane, so R × R is often called the Cartesian

plane. Conventionally, the Cartesian plane is denoted by R2 and referred to also as real 2-space.

5



6 CHAPTER 1. VECTORS AND MATRICES

x

y

(0, 0)(−1, 0)

(0, 2)(−1, 2)

Going one step further, let us keep track of east-west, north-south, and up-down movements.

Explicitly, if x measures the location of a particle in the x-axis; y measures the location of a particle

in the y-axis; and z measures the location of particle in the z-axis, then the ordered triple (x, y, z)

conveniently encodes this information. Like before, if the particle lies 3 units east of the origin, 3

units north of the origin, and 2 units above the origin, then the particle’s location is determined

by the ordered triple (3, 3, 2). We denote by R3 the collection of all ordered triples of real numbers,

i.e., we have that R3 = {(x, y, z) | x, y, and z are real numbers}; we refer to R3 as real 3-space.

z

x

y

(3, 0, 0)

(0, 3, 0)

(0, 0, 2)

(3, 3, 2)

Once and for all, if n is a positive integer, then we will denote by Rn the collection of all n-tuples

of real numbers, i.e., we have that Rn = {(x1, x2, . . . , xn) | x1, x2, . . . , xn are real numbers}. We will

typically use a capital letter X to denote a real n-tuple (x1, x2, . . . , xn). We refer to the real number

x1 as the first coordinate of X; we refer to the real number x2 as the second coordinate of X; we

refer to the real number xn as the nth coordinate ofX; and in general, the real number xi is called the

ith coordinate of X for each integer 1 ≤ i ≤ n. Every point in real n-space is uniquely determined by

its coordinates: indeed, if we consider any pair of pointsX = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)

such that (x1, x2, . . . , xn) = X = Y = (y1, y2, . . . , yn), then each of the coordinates on the left-hand

side must be equal to the corresponding coordinate on the right-hand side, i.e., we must have that

xi = yi for all integers 1 ≤ i ≤ n. Even though it is not possible to geometrically visualize points in
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real n-space for any integer n ≥ 4, it is still meaningful to discuss this notion. Explicitly, every set

of data consisting of n distinct real parameters induces an element of real n-space Rn.

Continuing from a geometric perspective, it is useful to distinguish between points and vectors

in real n-space. Explicitly, we may view the vector x = [x1, x2, . . . , xn] corresponding to the point

X = (x1, x2, . . . , xn) in real n-space as a ray (or arrow) emanating from the origin and extending

to the point (x1, x2, . . . , xn). Explicitly, the vector x = [1, 2, 3, 4] of R4 can be represented by the

ray extending from the origin (0, 0, 0, 0) to the point (1, 2, 3, 4) in R4. We refer to the vector x

in this case as lying in standard position. We will come to find that despite the mathematical

equivalence of points X and vectors x in real n-space, the benefit of this distinction is that vectors

in real n-space are translation-invariant and possess a notion of length. Often, we will restrict our

attention to the Cartesian plane R2 or real 3-space R3, where we can visualize these vectors.

x

y

X = (2, 1)

x

y

x = [2, 1]

Geometrically, we may prescribe the arithmetic of vector addition as follows: to determine

the vector sum x + y pictorially, visualize x and y as rays emanating from the origin; translate y

so that the “foot” of y lies at the “head” of x; and draw the ray emanating from the “foot” of x to

the “head” of y. Equivalently, one could also determine x + y by translating x so that the “foot”

of x lies at the “head” of y and subsequently drawing the raw emanating from the “foot” of y to

the “head” of x. Either way, the resulting vector sum can be pictured as follows.

y

x

y

x

x+ y

We refer to the process of computing the vector sum x + y in this manner as the Parallelogram

Law because the resulting diagram forms a parallelogram. We will in no time describe the algebraic

operations of vector addition and scalar multiplication, but for now, we note that for any vector

x emanating from the origin to a point X in real n-space, the point −X is obtained from X by

taking the coordinates of X with opposite sign. Explicitly, if we assume that X = (x1, x2, . . . , xn),

then −X = (−x1,−x2, . . . ,−xn). By identifying the vector −x in standard position with the ray

emanating from the origin to the point −X, we find that −x is nothing more than x in the “opposite
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direction.” Consequently, translating −x so that it overlaps x, the “head” of −x lies at the “foot”

of x and vice-versa. We may in this way describe vector subtraction pictorially as follows.

−y

y−y

xx

x− y

Even more, scalar multiplication of a vector x by a real number (or scalar) α can be visualized

by taking the vector αx as the ray emanating from the origin with length |α| times the length of

x in the same direction of x if α is positive and in the opposite direction if α is negative. We

will henceforth say that two vectors x and y in real n-space are parallel if there exists a nonzero

real number α such that y = αx. We will say that x and αx have the same direction if α > 0;

they have the opposite direction if α < 0; and the vector 0 corresponding to the origin has no

direction. Certainly, a pair of vectors in real n-space need not be parallel, hence in general, it might

not be possible to say that an arbitrary pair of vectors have the same or opposite direction.

Until now, we have considered vectors in real n-space from a primarily geometric standpoint

by way of diagrams and visualizations; however, this might very well come across as unsatisfactory

to some readers for several reasons — not least of all that it is difficult to draw vectors in three-

space and impossible to picture vectors with more coordinates than that. Bearing this in mind,

we turn our attention to an algebraic description of vectors in real n-space. We will to this end

represent vectors v and w in real n-space according to their coordinates. Explicitly, we will write

v = [v1, v2, . . . , vn] for some positive integer n and real numbers v1, v2, . . . , vn. Given any positive

integer m and any real numbers w1, w2, . . . , wm, the vectors v and w are equal (i.e., v = w) if and

only if m = n and wi = vi for each integer 1 ≤ i ≤ n. Concretely, a pair of vectors expressed in

terms of their coordinates are equal if and only if (1.) the number of coordinates of the vectors is the

same and (2.) the corresponding coordinates of the vectors are the same. We reserve the notation

0 for the zero vector whose coordinates are all zero, i.e., 0 = [0, 0, . . . , 0]. Crucially, all though we

will indiscriminately use the symbol 0 to denote the zero vector in all contexts, it is important to

realize that the zero vector in real n-space differs as n ranges across all positive integers.

We define vector addition and scalar multiplication coordinatewise. Explicitly, for any vectors

v = [v1, v2, . . . , vn] and w = [w1, w2, . . . , wn] in real n-space and any real number α, we declare that

v +w = [v1 + w1, v2 + w2, . . . , vn + wn] and

αv = [αv1, αv2, . . . , αvn].

Consequently, it follows that vector subtraction is carried out componentwise, as well.

v −w = [v1 − w1, v2 − w2, . . . , vn − wn]

Example 1.1.1. Consider the vectors u = [1, 1,−1], v = [1, 2, 3], and w = [0,−2,−2] in real

3-space. Observe that u+ v = [2, 3, 2], −w = [0, 2, 2], v −w = [1, 4, 5], and 3u = [3, 3,−3].
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Example 1.1.2. Observe that the vectors u = [1, 0,−1] and v = [−3, 0, 3] are parallel because we

have that v = −3u, hence u and v have the opposite direction; however, the vector w = [−1, 1, 1]

is not parallel to either u or v. (We will soon see that it is in fact perpendicular to u and v.)

Considering that vector addition and scalar multiplication in real n-space are determined by the

coordinates of the underlying vectors, the following proposition should not come as a surprise.

Proposition 1.1.3 (Properties of Vector Arithmetic in Real n-Space). Consider any vectors u, v,

and w in real n-space and any real numbers α and β. We have that

1.) vector addition is associative, i.e., (u+ v) +w = u+ (v +w);

2.) vector addition is commutative, i.e., v +w = w + v;

3.) the zero vector 0 is the additive identity, i.e., v + 0 = v;

4.) the additive inverse of v is −v, i.e., v + (−v) = 0;

5.) scalar multiplication is associative, i.e., α(βv) = (αβ)v;

6.) scalar multiplication is distributive across vector addition, i.e., α(v +w) = αv + αw;

7.) scalar multiplication is distributive across scalar addition, i.e., (α + β)v = αv + βv; and

8.) the multiplicative identity 1 preserves scale, i.e., 1v = v.

Proof. Each of the above properties can be verified directly by listing the coordinates of the vectors

u, v, and w and performing the vector addition and scalar multiplication coordinatewise.

Example 1.1.4. Consider the vectors u = [1, 2, 5], v = [−1, 3, 4], and w = [3, 1, 6] in real 3-space.

We can compute 3u− 5(v−w) according to the Properties of Vector Arithmetic in Real n-Space.

3u− 5(v −w) = 3u− 5v + 5w

= 3[1, 2, 5]− 5[−1, 3, 4] + 5[3, 1, 6]

= [3, 6, 15] + [5,−15,−20] + [15, 5, 30]

= [23,−4, 25]

We could alternatively computed the vector difference v−w = [−4, 2,−2] and proceeded as follows.

3u− 5(v −w) = 3[1, 2, 5]− 5[−4, 2,−2] = [3, 6, 15] + [20,−10, 10] = [23,−4, 25]

Either way, we obtain the same coordinates for the vector 3u− 5(v −w), as expected.

We refer to the vector 3u−5v+5w in Example 1.1.4 as a linear combination of the vectors u,

v, and w. Generally, for any vectors v1,v2, . . . ,vk in real n-space and any scalars α1, α2, . . . , αk, we

refer to the vector α1v1 + α2v2 + · · ·+ αkvk as the linear combination of v1,v2, . . . ,vk with scalar

coefficients α1, α2, . . . , αk. Later, these vectors will become a critical object of study; however,

for now, it is important to note that every vector v in real n-space can be written uniquely as a

linear combination of the standard basis vectors ei whose ith coordinate is 1 and whose other
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coordinates are 0 for all integers 1 ≤ i ≤ n. Concretely, there are two standard basis vectors in real

2-space: they are e1 = [1, 0] and e2 = [0, 1]. Likewise, there are three standard basis vectors in real

3-space — namely, e1 = [1, 0, 0], e2 = [0, 1, 0], and e3 = [0, 0, 1]. Observe that

[v1, v2, v3] = [v1, 0, 0] + [0, v2, 0] + [0, 0, v3] = v1[1, 0, 0] + v2[0, 1, 0] + v3[0, 0, 1] = v1e1 + v2e2 + v3e3

yields an expression of the vector [v1, v2, v3] as a linear combination of the standard basis vectors e1,

e2, and e3 with scalar coefficients corresponding to the coordinates of v. By analogy, this process

can be carried out for any vector in real n-space with respect to the standard basis e1, e2, . . . , en.

Example 1.1.5. Consider the vectors u = [1, 2, 5], v = [−1, 3, 4], and w = [3, 1, 6] in real 3-space.

Let us verify that w is a linear combination of u and v. By definition, we must find real numbers

α and β such that w = αu+ βv. Expressing this relation in terms of coordinates yields that

[3, 1, 6] = w = αu+ βv = α[1, 2, 5] + β[−1, 3, 4] = [α− β, 2α + 3β, 5α + 4β],

so it suffices to solve the induced system of equations with three equations and two unknowns.
α− β = 3

2α + 3β = 1

5α + 4β = 6

By the first equation, it follows that α = β+3; substitute this into the second equation to find that

1 = 2α + 3β = 2(β + 3) + 3β = 5β + 6,

hence we conclude that β = −1, from which it follows that α = 2. We conclude at last that

[3, 1, 2] = w = 2u− v = 2[1, 2, 5]− [−1, 3, 4].

We remark that the third equation 5α + 4β = 6 was not required to solve this system.

Geometrically, linear combinations of vectors give rise to lines, planes, and hyperplanes. Explic-

itly, given any nonzero vectors v and w in real n-space, the collection {αv | α ∈ R} of all possible

linear combinations of v is called the line along v, and the collection {αv + βw | α, β ∈ R} of all

possible linear combinations of v and w is called the plane spanned by v and w.

x

y

v

x

y

v

w
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Example 1.1.6. Consider the vectors v = [1, 3] and w = [3, 1] in real 2-space. By definition, the

line along v is given by the collection of points (α, 3α) such that α is a real number. Consequently,

the points (0, 0), (3, 9), and (−2,−6) lie on the line along v; however, the point (2, 2) does not lie

on this line: indeed, the point (2, 2) lies on the line along v if and only if there exists a real number

α such that (2, 2) = (α, 3α) if and only if α = 2 and 3α = 2. Because this is impossible, the point

(2, 2) does not lie on the lie along v. We say in this case that the system of equations{
α = 2

3α = 2

is inconsistent because there is no real number α for which both equations hold.

Likewise, if we wish to determine if the point (12, 12) lies in the planned spanned by v and w,

we seek real numbers α and β such that [12, 12] = αv + βw = α[1, 3] + β[3, 1] = [α + 3β, 3α + β],

hence we must solve the induced system of equations with two equations and two unknowns.{
α + 3β = 12

3α + β = 12

Like before, if we substitute β = −3α + 12 from the second equation into the first equation, then

12 = α + 3β = α + 3(−3α + 12) = −8α + 36

implies that −8α = −24 so that α = 3, from which it follows that β = 3.

By altering the presentation of our vectors from rows to columns, the relationship between linear

combinations of vectors and systems of linear equations becomes all the more evident: by expressing

the vectors v = [1, 3] and w = [3, 1] of Example 1.1.6 as column vectors, the containment of a point

(x, y) within the plane spanned by v and w can be determined by solving the vector equation[
x

y

]
= αv + βw = α

[
1

3

]
+ β

[
3

1

]
=

[
α + 3β

3α + β

]
.

Comparing the rows of the vectors on the left- and right-hand sides of this equation with the real

numbers x = 12 and y = 12 yields the system of equations from Example 1.1.6.

By analogy to lines and planes spanned by vectors in real n-space, given any nonzero vectors

v1,v2, . . . ,vk in real n-space, the collection of all possible linear combinations of v1,v2, . . . ,vk forms

a hyperplane called the span of the vectors v1,v2, . . . ,vk and denoted by

span{v1,v2, . . . ,vk} = {α1v1 + α2v2 + · · ·+ αkvk | α1, α2, . . . , αk are real numbers}.

We will return to discuss the notion of span in greater detail in Section 1.6.

1.2 Vector Magnitude and the Dot Product

Our aim throughout this section is to systematically develop the theory of Euclidean geometry in

real n-space that was suggested peripherally (and perhaps unsatisfactorily) in the previous section.
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We begin with a notion of distance. Given any points X = (x1, . . . , xn) and y = (y1, . . . , yn) in real

n-space, we define the distance between X and Y as the following real number.

d(X, Y ) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Consequently, the distance from the origin O = (0, 0, . . . , 0) to the point X is denoted as follows.

d(X,O) =
√
x2
1 + · · ·+ x2

n

We note that this definition of distance is merely a generalization of the length of the hypotenuse

of the right triangle formed by the x-axis, the y-axis, and a point in the Cartesian plane: indeed,

if we could visualize the right triangle formed by the origin of Rn, the point (x1, . . . , xn−1, 0), and

the point X = (x1, . . . , xn−1, xn) in Rn, then the length of its hypotenuse is precisely d(X,O).

Consider the vector x = [x1, . . . , xn] lying in standard position in real n-space. Geometrically, x

can be viewed as the ray emitting from the origin to the point X = (x1, . . . , xn), hence the length

of the vector x is precisely the distance from the origin O to the point X, i.e., the length of x is

∥x∥ = d(X,O) =
√

x2
1 + · · ·+ x2

n.

Often, we will rather refer to the quantity ∥x∥ as the magnitude or norm of the vector x.

Example 1.2.1. Consider the vectors u, v, and w from Example 1.1.1. Computing the magnitudes

of each vector yields ∥u+v∥ =
√
22 + 32 + 22 =

√
17 and ∥−w∥ =

√
02 + 22 + 22 = 2

√
2 = ∥w∥ and

∥3x∥ =
√
32 + 32 + (−3)2 = 3

√
3 = 3∥x∥; these last two examples indicate a general phenomenon.

Proposition 1.2.2. Consider any positive integer n and any vector x = [x1, . . . , xn] in real n-space.

1.) We have that ∥x∥ = 0 if and only if x is the zero vector.

2.) We have that ∥αx∥ = |α|∥x∥ for all real numbers α.

Proof. (1.) By definition, we have that ∥x∥ =
√
x2
1 + · · ·+ x2

n = 0 if and only if x2
1 + · · ·+ x2

n = 0.

Clearly, if x is the zero vector, then x1 = · · · = xn = 0 so that x2
1 + · · · + x2

n = 02 + · · · + 02 = 0.

Conversely, if x is a nonzero vector, then its ith coordinate xi must be nonzero for some integer

1 ≤ i ≤ n. Considering that the square of a nonzero real number if a positive real number, we

have that x2
i > 0. Even more, the square of any real number is non-negative, hence we have that

∥x∥2 = x2
1 + · · ·+ x2

n ≥ x2
i > 0. We conclude that ∥x∥ must be nonzero if x is nonzero.

(2.) We define αx = α[x1, . . . , xn] = [αx1, . . . , αxn]. Consequently, the definition of magnitude

yields ∥αx∥ =
√

(αx1)2 + · · ·+ (αxn)2 =
√
α2(x2

1 + · · ·+ xn)2 = |α|
√
x2
1 + · · ·+ x2

n = |α|∥x∥.

Conventionally, vectors of magnitude 1 are referred to as unit vectors. By Proposition 1.2.2,

it can be shown that every nonzero vector x gives rise to a unique unit vector 1
∥x∥x.

Corollary 1.2.3. Every nonzero vector x of Rn induces a unit vector 1
∥x∥x of Rn.

Proof. By Proposition 1.2.2, if x is any nonzero vector of Rn, then ∥x∥ is a positive real number.

Consequently, we have that α = 1
∥x∥ is a positive real number such that ∥αx∥ = α∥x∥ = 1.
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Example 1.2.4. Consider the vectors x, y, and z from Example 1.2.1. We demonstrated previously

that ∥x+ y∥ =
√
17 and ∥z∥ = 2

√
2, hence 1√

17
(x+ y) and 1

2
√
2
z are unit vectors of R3.

Consider any pair of vectors x and y lying in standard position in real n-space for some positive

integer n. Certainly, if n = 2 or n = 3, then we could visualize x and y in the Cartesian plane R2

or in the real 3-space R3 that we occupy, take a protractor, and measure the angle θ formed by the

intersection of x and y at the origin. Pictorially, we would obtain the following diagram.

−y

y−y

xx

x− y

x− y

θ

By the Law of Cosines, the triangle spanned by the vectors x, y, and x− y gives the following.

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ)

Observe that if x = [x1, . . . , xn] and y = [y1, . . . , yn], then by definition of the magnitude of a vector,

it follows that ∥x∥2 = x2
1 + · · ·+ x2

n and ∥y∥2 = y21 + · · ·+ y2n so that

∥x− y∥2 = (x1 − y1)
2 + · · ·+ (xn − yn)

2 = x2
1 + · · ·+ x2

n + y21 + · · ·+ y2n − 2(x1y1 + · · ·+ xnyn).

Combining this formula with the above equation obtained from the Law of Cosines yields that

∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ) = ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2(x1y1 + · · ·+ xnyn)

so that ∥x∥∥y∥ cos(θ) = x1y1+ · · ·+xnyn. We refer to the real number x1y1+ · · ·+xnyn as the dot

product x · y of the real vectors x and y. Explicitly, if x = [x1, . . . , xn] and y = [y1, . . . , yn], then

x · y = x1y1 + · · ·+ xnyn.

Even more, it is clear from this exposition that the dot product informs the geometry of real n-space.

Proposition 1.2.5. Given any pair of nonzero vectors x and y lying in standard position in real

n-space, the angle θ of intersection between the vectors x and y at the origin satisfies that

θ = cos−1

(
x · y

∥x∥∥y∥

)
Essentially, the formula is obtained from the previous paragraph by solving for θ in the identity

x · y = ∥x∥∥y∥ cos(θ). Consequently, we will typically refer to the identity x · y = ∥x∥∥y∥ cos(θ) as
the geometric representation of the dot product. Extending this notion of geometry of vectors in

real n-space, we will say that x and y are orthogonal (or perpendicular) provided that x ·y = 0.

Observe that the angle of intersection between orthogonal vectors is cos−1(0) = 90◦.
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Example 1.2.6. Consider the vectors x = [1, 1,−1], y = [1, 2, 3], and z = [0,−2,−2] in R3. By

definition of the dot product, we obtain the following identities.

x · x = (1)(1) + (1)(1) + (−1)(−1) = 3

x · y = (1)(1) + (1)(2) + (−1)(3) = 0

x · z = (1)(0) + (1)(−2) + (−1)(−2) = 0

y · z = (1)(0) + (2)(−2) + (3)(−2) = −10

Consequently, it follows that x is orthogonal to both y and z, but x is not orthogonal to itself and

y is not orthogonal to z. Even more, we have that x · x = ∥x∥2.
Example 1.2.7. Consider the vectors x = [1, 2, 0, 2] and y = [−3, 1, 1, 5] in R4. Even though we

cannot visualize x and y as rays emitting from the origin because they exist in real 4-space, we can

find their angle θ of intersection. By definition of vector magnitude, we have that

∥x∥ =
√
12 + 22 + 02 + 22 =

√
9 = 3 and

∥y∥ =
√

(−3)2 + 12 + 12 + 52 =
√
36 = 6.

By definition of the dot product, it follows that x · y = (1)(−3) + (2)(1) + (0)(1) + (2)(5) = 9.

Consequently, we conclude by the geometric representation of the dot product that

θ = cos−1

(
x · y

∥x∥∥y∥

)
= cos−1

(
9

(3)(6)

)
= cos−1

(
1

2

)
= 60◦.

Considering that the dot product of vectors in real n-space is determined by the coordinates of

the underlying vectors, the following proposition is unsurprising and straightforward to prove.

Proposition 1.2.8 (Properties of the Dot Product in Real n-Space). Consider any vectors x, y,

and z lying in standard position in real n-space and any real number α. We have that

(1.) the dot product is commutative, i.e., x · y = y · x;

(2.) the dot product is distributive across vector addition, i.e., x · (y + z) = x · y + x · z;

(3.) the dot product is homogeneous, i.e., (αx) · y = α(x · y) = x · (αy); and

(4.) the dot product is non-degenerate, i.e., x · x is nonzero if and only if x is nonzero.

Even more, the dot product in real n-space satisfies the Law of Cosines

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ).

Proof. Each of the above properties can be verified directly by listing the coordinates of the vectors

x, y, and z, computing the dot product, and appealing to familiar properties of real numbers.

Even more, the commutativity and distributivity of the dot product yield that

∥x− y∥2 = (x− y) · (x− y) = x · x+ y · y − 2(x · y) = ∥x∥2 + ∥y∥2 − 2(x · y).

By the geometric representation of the dot product, we find that x ·y = ∥x∥∥y∥ cos(θ) for the angle
θ of intersection between x and y. Considering that the vectors x, y, and x−y induce a triangle of

side lengths ∥x∥, ∥y∥, and ∥x− y∥, respectively, such that the side of length ∥x− y∥ lies opposite

the angle θ of intersection between x and y, the Law of Cosines holds in this case.
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By applying the Properties of the Dot Product in Real n-Space in the case of orthogonal vectors,

we can prove the following important properties of orthogonal vectors.

Proposition 1.2.9 (Properties of Orthogonal Vectors in Real n-Space). Consider any vectors x,

y, and z lying in standard position in real n-space.

1.) If x is orthogonal to y and z, then x is orthogonal to y + z.

2.) If x is orthogonal to y, then x is orthogonal to αy for all real numbers α.

3.) If x is orthogonal to y, then their angle of intersection is 90◦, i.e., x and y are perpendicular.

4.) If x is orthogonal to y, then ∥x−y∥2 = ∥x∥2+∥y∥2, i.e., the Pythagorean Theorem holds.

Proof. 1.) By definition, if x and y are orthogonal and x and z are orthogonal, then x · y = 0 and

x · z = 0. By Proposition 1.2.8, it follows that x · (y + z) = x · y + x · z = 0.

2.) By Proposition 1.2.8, we have that x · (αy) = α(x · y) = 0 for all real numbers α.

3.) By Proposition 1.2.5, if x and y are orthogonal vectors lying in standard position in real

n-space, then the angle θ of intersection between the vectors x and y is given by θ = cos−1(0) = 90◦.

4.) By the Law of Cosines and its proof in Proposition 1.2.8, we have that

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2(x · y).

Considering that x and y are orthogonal, we conclude that 2(x · y) = 0, as desired.

Example 1.2.10. We determine in this example a unit vector perpendicular to x = [−1, 3, 4]. By

definition, we seek a real vector y = [y1, y2, y3] such that x ·y = 0 and ∥y∥ = 1. Computing the dot

product of x and y, we find that 0 = x · y = −y1 + 3y2 + 4y3. We have three variables and only

one equation, hence there must be two free variables that we are allowed to set equal to anything

that is convenient. We will choose y1 = 0 and y2 = −4; the resulting equation is 3(−4)+4y3 = 0 so

that 4y3 = 3(4) and y3 = 3. Consequently, the vector y = [0,−4, 3] is orthogonal to x; however, its

magnitude is
√
02 + (−4)2 + 32 = 5, so it is not a unit vector. By Proposition 1.2.3, we find that

1
5
y is a unit vector; it is orthogonal to x by Proposition 1.2.9 because y is orthogonal to x.

Example 1.2.11. We determine in this example a unit vector perpendicular to x = [−1, 3, 4] and

y = [2, 1,−1]. Like before in Example 1.2.10, we must solve the following system of equations.

0 = x · [z1, z2, z3] = −z1 + 3z2 + 4z3

0 = y · [z1, z2, z3] = 2z1 + z2 − z3

By adding twice the first equation to the second equation, we find that 7z2 + 7z3 = 0 or z3 = −z2.

We have two equations in three unknowns, so we will have at least one free variable; however, as the

arithmetic bears out, we find that z3 depends on z2, hence z2 is a second free variable. By setting

z1 = 0 and z2 = 1, we find that z3 = −1 and z = [0, 1,−1] is orthogonal to x and y. Considering

that ∥z∥ =
√
02 + 12 + (−1)2 =

√
2, we conclude that 1√

2
z is a unit vector orthogonal to x and y.

Geometrically, we have seen to our pleasant surprise that the dot product in real n-space enjoys

many nice properties. But perhaps one of its most astounding features is the following.
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Proposition 1.2.12. Given any nonzero, non-parallel vectors x and y lying in standard position

in real n-space, the area of the parallelogram spanned by x and y is ∥x∥∥y∥ sin(θ).

Proof. Pictorially, the parallelogram spanned by x and y can be determined as follows.

x

y

h
θ

Observe that the angle θ of intersection between x and y satisfies that h = ∥x∥ sin(θ). Because the
area of a parallelogram is the product of its base and its height, it is h∥y∥ = ∥x∥∥y∥ sin(θ).

Before we conclude this section, we state and prove two inequalities regarding vectors in real n-

space. Crucially, the following proposition provides a purely algebraic foundation for the geometry

of the dot product in real n-space that we have as yet taken for granted (cf. Proposition 1.2.5).

Theorem 1.2.13 (Cauchy-Schwarz Inequality). Given any vectors x and y in Rn, we have that

|x · y| ≤ ∥x∥∥y∥.

Consequently, the inverse cosine of x · y/∥x∥∥y∥ is well-defined, and Proposition 1.2.5 is valid.

Proof. Clearly, if one of x or y is zero, then x · y = 0 and ∥x∥∥y∥ = 0, hence the inequality holds.

Consequently, we may assume that neither x nor y is zero so that y ·y is nonzero by the Properties

of the Dot Product in Real n-Space. Even more, for any real numbers α and β, we have that

∥αx+ βy∥2 = (αx+ βy) · (αx+ βy) = α2(x · x) + 2αβ(x · y) + β2(y · y)

is non-negative. By the above identity with α = y · y and β = −(x · y), we find that

(x · x)(y · y)2 − (x · y)2(y · y) ≥ 0.

Considering that y · y is nonzero by assumption, it must be a positive real number. Cancelling one

factor of y · y from both sides of the above inequality yields that (x · y)2 ≤ (x · x)(y · y).

Theorem 1.2.14 (Triangle Inequality). Given any vectors x and y in Rn, we have that

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. By Proposition 1.2.2, we have that ∥x+y∥, ∥x∥, and ∥y∥ are each non-negative real numbers,

hence the desired inequality holds if and only if the inequality ∥x+ y∥2 ≤ (∥x∥+ ∥y∥)2 holds. By

Proposition 1.2.8, the left-hand side of this inequality is (x+ y) · (x+ y) = ∥x∥2 + 2(x · y) + ∥y∥2.
By the Cauchy-Schwarz Inequality, it follows that 2(x · y) ≤ 2∥x∥∥y∥, hence the inequality holds.

∥x+ y∥2 = ∥x∥2 + 2(x · y) + |y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2
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1.3 Matrices and Matrix Operations

We will continue to assume throughout this chapter that m and n are positive integers. We refer

to a visual representation of any collection of data arranged into m rows and n columns as an

m× n array. Each entry of an m× n array A is a component of A. Each component of A can be

uniquely identified by specifying its row and column: explicitly, we use the symbol aij to indicate

the component of A that lies in the ith row and jth column. Often, we will refer to aij as the (i, j)th

entry of the array A. Collectively, therefore, we may view the array A as indexed by its entries

aij for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n. Components of the form aii are referred to

as the diagonal entries of A because they lie in the same row and column of A; the collection of

all diagonal entries of A is called the main diagonal of A. We will adopt the convention that an

m× n array be written using large rectangular brackets, as in each of the following examples.

Example 1.3.1. Consider the case that Alice, Bob, Carly, and Daryl play Bridge together. If Alice

and Carly belong to one team and Bob and Daryl belong to the opposing team, then we may encode

this information (i.e., these teams) as the two columns of the following 2× 2 array A.

A =

[
Alice Bob

Carly Daryl

]
Observe that a11 = Alice, a12 = Bob, a21 = Carly, and a22 = Daryl. One could just as well swap

the rows and columns to display the teams as rows by constructing the following 2× 2 array AT .

AT =

[
Alice Carly

Bob Daryl

]
Our principal concern throughout this course are those m×n arrays consisting entirely of (real)

numbers. Under this restriction, we may refer to anm×n array as a (real)m×nmatrix. Generally,

one can define matrices consisting of elements lying in any ring, but we will not be so general.

Example 1.3.2. Each real number x may be viewed as a real 1× 1 matrix
[
x
]
.

Example 1.3.3. Consider once again the scenario of Example 1.3.1. We may assign to each player

a real number called a “skill value” between 0 and 100, e.g., suppose that Alice has skill value 88;

Bob has skill value 72; Carly has skill value 95; and Daryl has skill value 90. Under this convention,

the matrices of Example 1.3.1 yield new matrices that we could call “skill matrices” as follows.

S =

[
88 72

95 90

]
ST =

[
88 95

72 90

]
Our previous three examples dealt with square matrices, i.e., matrices for which the number of

rows and the number of columns were the same (i.e., m = n); however, not all matrices are square.

Example 1.3.4. Consider the 1× 5 matrix
[
1 2 3 4 5

]
of the first five positive integers.

We refer to matrices with only one row as row vectors; matrices with only one column are

called column vectors. We are familiar with some notion of vectors from our study of real n-space

in Section 1.1. We may also use the terms (horizontal) n-tuples for row vectors with n columns

(i.e., 1×n matrices) and (vertical) m-tuples for column vectors with m rows (i.e., m× 1 matrices).
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Like we mentioned in the first paragraph of this section, anm×nmatrix A is uniquely determined

by the entry aij in its ith row and jth column for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For instance, the matrix of Example 1.3.4 is the unique matrix with one row whose jth column

consists of the integer j for each integer 1 ≤ j ≤ 5. Under this identification, we will adopt the

one-line notation A =
[
aij

]
1≤i≤m
1≤j≤n

for the m× n matrix A with aij in its ith row and jth column.

Example 1.3.5. Consider the 2×3 matrix whose ith row and jth column consists of the sum i+ j.

We may write this symbolically (in one-line notation) as
[
i+ j

]
1≤i≤2
1≤j≤3

or expanded as follows.

[j = 1 j = 2 j = 3

i = 1 1 + 1 1 + 2 1 + 3

i = 2 2 + 1 2 + 2 2 + 3

]
or

[
2 3 4

3 4 5

]
Example 1.3.6. Given any positive integers m and n, there is one and only one matrix consisting

entirely of zeros: it is the m× n zero matrix Om×n. Explicitly, we have the following examples.

O2×2 =

[
0 0

0 0

]
O2×3 =

[
0 0 0

0 0 0

]
O3×2 =

0 0

0 0

0 0

 O3×3 =

0 0 0

0 0 0

0 0 0


Often, it is most convenient to simply write O for the zero matrix with the understanding that the

number of rows and columns of O is contingent upon the context in which it is discussed.

Example 1.3.7. We refer to the matrix Im×n =
[
δij

]
1≤i≤m
1≤j≤n

as the m× n identity matrix, where

δij =

{
1 if i = j and

0 if i ̸= j

is the Kronecker delta. Put another way, the m× n identity matrix is the unique m× n matrix

whose (i, j)th component is one for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n such that i = j

and whose other components are all zero. One can also say that Im×n is the unique m× n matrix

with ones along the main diagonal and zeros elsewhere. Explicitly, we have the following examples.

I2×2 =

[
1 0

0 1

]
I2×3 =

[
1 0 0

0 1 0

]
I3×2 =

1 0

0 1

0 0

 I3×3 =

1 0 0

0 1 0

0 0 1


Observe that the only nonzero components of In×n lie on the main diagonal, hence In×n is a diagonal

matrix. Explicitly, a diagonal matrix is an n × n matrix consisting entirely of zeros off the main

diagonal. Even more, In×n is the unique diagonal n × n matrix whose nonzero entries are all one.

Like with the zero matrix, we will write I for the square identity matrix of the appropriate size.

Example 1.3.8. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

, its matrix transpose AT is the n×m

matrix obtained by swapping the rows and columns of A, i.e., we have that AT =
[
aji

]
1≤i≤n
1≤j≤m

. Put
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another way, the (i, j)th entry of AT is the (j, i)th entry of A, hence the ith row of AT is precisely

the ith column of A. Explicitly, for the matrix A defined in Example 1.3.5, we have the following.

A =

[
2 3 4

3 4 5

]
AT =

2 3

3 4

4 5


Observe that the first row of A becomes the first column of AT (and likewise for the second row).

Consequently, the transpose of any 1×n row vector is an n×1 column vector. We will also refer to

AT simply as the transpose of A; the process of computing AT is called transposition. One other

thing to notice is that ITm×n = In×m, hence we have that ITn×n = In×n or IT = I.

Definition 1.3.9. We say that an m×n matrix A is symmetric if it holds that AT = A. Observe

that a matrix is symmetric only if it is square, i.e., a non-square matrix is never symmetric.

Considering that matrices encode numerical data, it is not surprising to find that they induce

their own arithmetic. Using one-line notation, matrix addition can be defined as follows.

Definition 1.3.10. Given any m × n matrices A =
[
aij

]
1≤i≤m
1≤j≤n

and B =
[
bij

]
1≤i≤m
1≤j≤n

, the matrix

sum of A and B is the m×n matrix A+B =
[
aij + bij

]
1≤i≤m
1≤j≤n

. Put in words, the matrix sum A+B

is the m× n matrix whose (i, j)th entry is the sum of the (i, j)th entries of A and B.

Caution: the matrix sum is not defined for matrices with different numbers of rows or columns.

Example 1.3.11. We compute the matrix sum of the following 2× 3 matrices.[
1 2 3

4 5 6

]
+

[
−1 0 1

−1 0 1

]
=

[
1 +−1 2 + 0 3 + 1

4 +−1 5 + 0 6 + 1

]
=

[
0 2 4

3 5 7

]
Example 1.3.12. If A is any m × n matrix, then we have that A + Om×n = A = Om×n + A.

Consequently, we may view Om×n as the additive identity among all m× n matrices.

Generally, for any realm×nmatrix A =
[
aij

]
1≤i≤m
1≤j≤n

, we will typically refer to any (real) number c

as a scalar, and we define the scalar multiple of A by the scalar c as cA =
[
caij

]
1≤i≤m
1≤j≤n

. Essentially,

we may view this as a generalization of the sum of the matrix A with itself c times.

Example 1.3.13. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

, we will write −A =
[
−aij

]
1≤i≤m
1≤j≤n

. We

have that A+ (−A) = Om×n = −A+ A, and we say that −A is the additive inverse of A.

Our next proposition illustrates that matrix transposition and matrix addition are compatible.

Proposition 1.3.14. Let A and B be any m × n matrices. We have that (A + B)T = AT + BT .

Put another way, the transpose of a sum of matrices is the sum of the matrix transposes.

Proof. By Definition 1.3.10, the (i, j)th entry of A+B is the sum of the (i, j)th entry of A and the

(i, j)th entry of B. By Example 1.3.8, the (i, j)th entry of (A+B)T is the (j, i)th entry of A+B, i.e.,

the sum of the (j, i)th entry of A and the (j, i)th entry of B. But by the same example, this is the

sum of the (i, j)th entry of AT and the (i, j)th entry of BT . Ultimately, this shows that the (i, j)th

entry of (A+B)T and the (i, j)th entry of AT +BT are the same so that (A+B)T = AT +BT .
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Even more, if the number of columns (or rows) of a matrix A equals the number of rows (or

columns) of a matrix B, then the product of the matrices A and B is defined as follows.

Definition 1.3.15. Given any m× n matrix A =
[
aij

]
1≤i≤m
1≤j≤n

and any n× r matrix B =
[
aij

]
1≤i≤n
1≤j≤r

,

the (left) matrix product of A and B is the m× r matrix AB whose (i, j)th entry is given by

(AB)ij =
n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj.

Put in words, the matrix product AB is the m × r matrix whose (i, j)th entry is the sum of the

product of the (i, k)th entry of A and the (k, j)th entry of B for all integers 1 ≤ k ≤ n.

Crucially, matrix multiplication is not commutative, i.e., the order of the matrices in the matrix

product matters; however, if we assume that r = m, then the (right) matrix product BA can be

defined analogously. Be sure to note also that the number of rows of AB is the same as the number

of rows of A, and the number of columns of AB is the same as the number of columns of B.

Caution: the product is not defined for matrices with an incompatible number of rows and columns.

Example 1.3.16. Consider the following real matrices.

A =

[
1 2 3

2 3 4

]
B =

−1 0

0 1

−1 1

 C =

[
−1 0

−1 1

]
D =

−1 0 1

0 1 2

−1 1 3


Considering that A is a 2 × 3 matrix and B is a 3 × 2 matrix, both of the products AB and BA

can be formed: AB is a 2× 2 matrix, and BA is a 3× 3 matrix. Explicitly, they are as follows.

AB =

[
1 2 3

2 3 4

]−1 0

0 1

−1 1

 =

[
1(−1) + 2(0) + 3(−1) 1(0) + 2(1) + 3(1)

2(−1) + 3(0) + 4(−1) 2(0) + 3(1) + 4(1)

]
=

[
−4 5

−6 7

]

BA =

−1 0

0 1

−1 1

[
1 2 3

2 3 4

]
=

−1(1) + 0(2) −1(2) + 0(3) −1(3) + 0(4)

0(1) + 1(2) 0(2) + 1(3) 0(3) + 1(4)

−1(1) + 1(2) −1(2) + 1(3) −1(3) + 1(4)

 =

−1 −2 −3

2 3 4

1 1 1


On the other hand, neither of the matrix products AC or BD exist; however, the matrices CA and

DB can be computed because A and B have as many rows as C and D have columns, respectively.

Example 1.3.17. Consider the following real matrices.

A =

[
1 2

3 4

]
B =

[
−1 0

0 1

]
Considering that A and B are both 2× 2 matrices, the 2× 2 matrices AB and BA can be formed.

AB =

[
1 2

3 4

] [
−1 0

0 1

]
=

[
1(−1) + 2(0) 1(0) + 2(1)

3(−1) + 4(0) 3(0) + 4(1)

]
=

[
−1 2

−3 4

]
BA =

[
−1 0

0 1

] [
1 2

3 4

]
=

[
−1(1) + 0(3) −1(2) + 0(4)

0(1) + 1(3) 0(2) + 1(4)

]
=

[
−1 −2

3 4

]
Crucially, we note that AB and BA are not equal as matrices, i.e., we have that AB ̸= BA.
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Remark 1.3.18. Example 1.3.16 motivates the following definition of matrix multiplication. Con-

sider a 1× n row vector v =
[
v11 v12 · · · v1n

]
and the following n× 1 column vector.

w =


w11

w21

...

wn1


We define the vector dot product v ·w of the vectors v and w as the 1× 1 matrix vwT , i.e.,

v ·w = vwT =
[
v11w11 + v12w21 + · · ·+ v1nwn1

]
.

Given any m× n matrix A and any n× r matrix B, the ith row of A may be viewed as the 1× n

vector Ai =
[
ai1 ai2 · · · ain

]
and the jth column of B as the following n× 1 vector.

Bj =


b1j
b2j
...

bnj


Ultimately, under this interpretation, the matrix product AB is defined as the m× r matrix whose

(i, j)th component is the dot product Ai ·Bj = ai1b1j + ai2b2j + · · ·+ ainbnj =
∑n

k=1 aikbkj.

We adapt the following example from the example at the bottom of page 50 of [Lan86].

Example 1.3.19. We say that an n× n matrix A is a Markov matrix if each component of A is

a non-negative real number and the sum of each column of A is 1. For instance, the 2× 2 matrix

A =

[
0.9 0.5

0.1 0.5

]
is a Markov matrix. We may view this Markov matrix as representing a real-life scenario as follows.

Godspeed You! Black Emperor are performing live at the Blue Note in Columbia, Missouri, and

Alice and Bob are considering attending the concert. Currently, Alice is 90% certain that she will

attend, so she must be 10% certain that she will not attend. On the other hand, Bob is 50% sure

he will attend. Consequently, the columns of the matrix A represent Alice and Bob, respectively,

and the rows represent their certainty or uncertainty that they will attend the show, respectively.

Even more, suppose that today, Alice has the propensity a to attend the concert and Bob has the

propensity b to attend, and tomorrow, Alice has the propensity 0.9a+0.5b to attend the concert and

Bob has the propensity 0.1a+0.5b to attend. Under these identifications, tomorrow, the propensity

that Alice and Bob will attend the concert is given by the following matrix product.[
0.9 0.5

0.1 0.5

] [
a

b

]
=

[
0.9a+ 0.5b

0.1a+ 0.5b

]
= a

[
0.9

0.1

]
+ b

[
0.5

0.5

]
.

We could continue to iterate this process to predict the propensity that Alice and Bob will attend

the concert on any given day in the future; the resulting model is referred to as a Markov process.
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Remark 1.3.20. Example 1.3.19 illustrates that if x is an n× 1 column vector and A is an m× n

matrix, then the m× 1 column vector Ax is simply a linear combination of the columns of A.

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1

x2

...

xn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn


We will demonstrate now that matrix multiplication is associative and distributive.

Proposition 1.3.21 (Matrix Multiplication Is Associative). If A is any m × n matrix, B is any

n× r matrix, and C is any r × s matrix, then the matrix products A(BC) and (AB)C are equal.

Proof. By Definition 1.3.15, we have that BC is an n× s matrix, hence the matrix product A(BC)

is well-defined because the number of columns of A is equal to the number of rows of BC; a similar

argument shows that (AB)C is well-defined, hence it suffices to prove that A(BC) = (AB)C. By

the same definition, the (i, j)th entry of A(BC) is the sum of the products of the (i, k)th entry of

A and the (k, j)th entry of BC for all integers 1 ≤ k ≤ n, and the (k, j)th entry of BC is the sum

of the products of the (k, ℓ)th entry of B and the (ℓ, j)th entry of C for all integers 1 ≤ ℓ ≤ r. Put

into symbols, the previous sentence can be expressed as the double summation identity

A(BC)ij =
n∑

k=1

r∑
ℓ=1

aikbkℓcℓj.

Considering that the order of summation of a finite sum does not matter, it follows that

A(BC)ij =
r∑

ℓ=1

n∑
k=1

aikbkℓcℓj.

Observe that
∑n

k=1 aikbkℓ is nothing more than the (i, ℓ)th entry of AB, hence we may view the

(i, j)th entry of A(BC) as the sum of the products of the (i, ℓ)th entry of AB and the (ℓ, j)th entry

of C for all integers 1 ≤ i ≤ r, i.e., it is the (i, j)th entry of (AB)C. Ultimately, this shows that the

(i, j)th entry of A(BC) and the (i, j)th entry of (AB)C are the same so that A(BC) = (AB)C.

Proposition 1.3.22 (Matrix Multiplication Is Distributive). If A is any m× n matrix and B and

C are any n× r matrices, then A(B + C) = AB + AC and A(cB) = c(AB) for all scalars c.

Proof. By Definition 1.3.10, the matrix sum B+C is an n× r matrix, hence the product A(B+C)

is well-defined because the number of columns of A is equal to the number of rows of B + C. By

Definition 1.3.15, the (i, j)th entry of A(B+C) is the sum of the products of the (i, k)th entry of A

and the (k, j)the entry of BC for all integers 1 ≤ k ≤ n; the latter is by Definition 1.3.10 the sum

of the (k, j)th entry of B and the (k, j)th entry of C. Because multiplication is distributive over

addition, the (i, j)th entry of A(B+C) is the sum of the products of the (i, k)th entry of A and the

(k, j)th entry of B for all integers 1 ≤ k ≤ n plus the sum of the products of the (i, k)th entry of A

and the (k, j)th entry of C for all integers 1 ≤ k ≤ n, i.e., it is the sum of the (i, j)th entry of AB

and the (i, j)th entry of AC, i.e., it is the (i, j)th entry of AB + AC. Because the (i, j)th entry of

A(B+C) and the (i, j)th entry of AB+AC are the same, we conclude that A(B+C) = AB+AC.

We leave it as an exercise for the reader to demonstrate that A(cB) = c(AB) for all scalars c;

however, we remark that inspiration can be found in the proof of Proposition 1.3.21.
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Ultimately, Proposition 1.3.22 implies that matrix multiplication is distributive, i.e., if A is any

m×n matrix, B and C are any n× r matrices, and c is any scalar, then A(cB+C) = c(AB)+AC.

Example 1.3.23. Given any n×n matrix A, the matrix product of A with itself is denoted simply

by A2; it is an n× n matrix, hence we may form the matrix product of A2 with A. By Proposition

1.3.21, we have that (A2)A = (AA)A = A(AA) = A(A2); we denote this simply by A3. Continuing

in this manner, the k-fold product of A is Ak = Ak−1A = AAk−1 for all integers k ≥ 2. Each of

these is an n×n matrix, so we can scale these matrices and add them together to obtain a matrix

polynomial. By the distributive property for matrices, matrix polynomials behave familiarly, e.g.,

(A− I)(A+ I) = A2 + AI − IA− I2 = A2 + A− A− I = A2 − I and

(A+ I)3 = (A2 + 2A+ I)(A+ I) = A3 + A2 + 2A2 + 2A+ A+ I = A3 + 3A2 + 3A+ I.

Even more, like matrix addition, matrix multiplication is compatible with transposition.

Proposition 1.3.24. If A is any m× n matrix and B is any n× r matrix, then (AB)T = BTAT .

Put another way, the transpose of a matrix product is the reverse matrix product of the transposes.

Proof. By Example 1.3.8, the (i, j)th entry of (AB)T is the (j, i)th AB. By Definition 1.3.15, the

(j, i)th entry of AB is the sum of the products of the (j, k)th entry of A and the (k, i)th entry of

B for all integers 1 ≤ k ≤ n. Considering that scalar multiplication is commutative, this is equal

to the sum of the products of the (i, k)th entry of BT and the (k, j)th entry of AT for all integers

1 ≤ k ≤ n, i.e., it is the (i, j)th entry of BTAT . We conclude therefore that (AB)T = BTAT .

We conclude with a summary of the matrix operations proved in the previous propositions.

Proposition 1.3.25 (Properties of Matrix Addition, Multiplication, and Transposition). Consider

any matrices A, B, and C such that the following matrix sums and matrix products are well-defined.

1.) Matrix addition is associative, i.e., (A+B)+ = A+ (B + C).

2.) Matrix addition is commutative, i.e., A+B = B + A.

3.) The zero matrix O is the additive identity, i.e., A+O = A.

4.) The additive inverse of A is −A, i.e., A+ (−A) = O.

5.) Matrix multiplication is associative, i.e., (AB)C = A(BC).

6.) Matrix multiplication is distributive, i.e., A(B +C) = AB +AC and (A+B)C = AC +BC.

7.) The multiplicative identity is the identity matrix, i.e., IA = A and BI = B.

8.) Matrix transposition is distributive across matrix addition, i.e., (A+B)T = AT +BT .

9.) Matrix transposition is order-reversing, i.e., (AB)T = BTAT .

10.) Scalar multiplication is associative, i.e., r(sA) = (rs)A.

11.) Scalar multiplication is distributive across matrix addition, i.e., r(A+B) = rA+ rB.

12.) Scalar multiplication is distributive across scalar addition, i.e., (r + s)A = rA+ sA.

13.) Scalar multiplication is homogeneous, i.e., (rA)B = r(AB) = A(rB).
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1.4 Linear Systems of Equations and Gaussian Elimination

We will continue to assume that m and n are positive integers. If x1, . . . , xn are any variables, then

a (real) linear combination of x1, . . . , xn is an expression of the form a1x1 + · · ·+ anxn for some

(real) scalars a1, . . . , an. Consequently, a (real) 1× n linear equation is any equation of the form

a1x1 + · · · + anxn = b for some (real) scalars a1, . . . , an, and b. Even more, a (real) m× n system

of linear equations consists of m linear equations in n variables; this is represented as follows.

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

Explicitly, the positive integer m represents the number of equations in the m× n system of linear

equations, and the positive integer n represents the number of variables in each equation.

Example 1.4.1. On 10 June 2022, in Game Four of the 2022 NBA Finals, Stephen Curry scored

43 points. Let x1 be the number of one-pointers made; let x2 be the number of two-pointers made;

and let x3 be the number of three-pointers made by Curry in this appearance. Observe that Curry’s

point total is given by the 1× 3 (integer) linear equation x1 + 2x2 + 3x3 = 43.

We say that the (real) scalars ξ1, . . . , ξn constitute a solution to a (real) m×n system of linear

equations if it holds that ai1ξ1 + · · ·+ ainξn = bi for each integer 1 ≤ i ≤ m.

Example 1.4.2. One can find many solutions to the matrix equation of Example 1.4.1. Explicitly,

ξ1 = 43 and ξ2 = ξ3 = 0 or ξ1 = 41, ξ2 = 1, and ξ3 = 0 give rise to two distinct solutions.

Given more information, we can reduce the number of possible solutions in Example 1.4.1.

Using the fact that Curry made seven three-pointers, we may substitute x3 = 7 into our equation

x1 + 2x2 + 3x3 = 43 to find that x1 + 2x2 + 21 = 43 or x1 + 2x2 = 22. Even more, Curry made a

combined fifteen free throws and two-pointers. Consequently, we have that x1 + x2 = 15. Observe

that these two equations involving x1 and x2 induce the following 2× 2 system of linear equations.

x1 + 2x2 = 22

x1 + x2 = 15

We may determine the values of x1 and x2 that solve the system: we have that x1 = 15−x2 so that

22 = x1 + 2x2 = (15− x2) + 2x2 = 15 + x2; cancelling 15 from both sides gives x2 = 7 and x1 = 8.

Examples 1.4.1 and 1.4.2 highlight the differences between the general solution of a system of

linear equations as opposed to a particular solution. Explicitly, the 1× 3 system of equations

x1 + 2x2 + 3x3 = 43

admits infinitely many solutions: by solving this equation for x1 in terms of x2 and x3, we find that

x1 = −2x2 − 3x3 + 43, hence the general solution to this system of equations is given by

ξ = [−2x2 − 3x3 + 43, x2, x3] = x2[−2, 1, 0] + x3[−3, 0, 1] + [43, 0, 0].

Consequently, any choice of real numbers x2 and x3 determine a particular solution to this system

of linear equations. We will soon revisit this distinction with more sophisticated tools.
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Example 1.4.3. Geometrically, linear equations encode lines, planes, and hyperplanes. Explicitly,

for any real numbers a and b (not both of which are zero) and any real number c, the solutions of

the linear equation ax + by = c form a line (e.g., 2x + y = 3 is a line with y-intercept (0, 3) and

slope −2). Likewise, it is not difficult to verify that for any real numbers a, b, and c (not all of

which are zero) and any real number d, the solutions of the linear equation ax+ by + cz = d form

a plane: indeed, if a is nonzero, then solving for x in this linear equation yields that

x = − b

a
y − c

a
z + d,

hence (x, y, z) is a translation of a point lying in the plane spanned by [0, 1, 0] and [0, 0, 1].

Using matrices, we can more efficiently rephrase our above observations concerningm×n systems

of linear equations. Explicitly, observe that a (real) m× n system of linear equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

gives rise to a n×1 matrix x =
[
x1 x2 · · · xn

]T
, an m×1 matrix b =

[
b1 b2 · · · bm

]T
, and an

m× n matrix A whose (i, j)th entry is the coefficient aij of the jth variable xj of the ith equation

ai1x1 + · · ·+ ainxn = bi of the m× n system of linear equations, i.e., the following m× n matrix.

A =


a11 · · · a1n
a21 · · · a2n
...

...

am1 · · · amn


Conversely, the aforementioned matrices A, x, and b satisfy that Ax = b. We refer to the equation

Ax = b as a (real) m × n matrix equation. Often, the m × n matrix A and the m × 1 matrix

b are known while the n × 1 matrix x consists of n variables. Ultimately, we obtain a one-to-one

correspondence between (real) m× n systems of linear equations and m× n matrix equations.

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...

am1x1 + · · ·+ amnxn = bm

⇐⇒ Ax = b, i.e.,


a11 · · · a1n
a21 · · · a2n
...

...

am1 · · · amn



x1

x2

...

xn

 =


b1
b2
...

bm


Example 1.4.4. We will convert the data of Examples 1.4.1 and 1.4.2 into the language of matrix

equations. Consider the matrix A =
[
1 2 3

]
whose jth column is the point value of a j-pointer;

the matrix x =
[
x1 x2 x3

]T
whose jth row is the number of j-pointers made by Curry; and the

matrix b =
[
43
]
consisting of the total points made by Curry. Observe that the linear equation

x1 + 2x2 + 3x3 = 43 is in one-to-one correspondence with the matrix equation Ax = b.

We say that a (real) n× 1 matrix ξ forms a solution to the matrix equation Ax = b if it holds

that Aξ = b; this is a direct analog of a solution of the m× n system of linear equations.
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Example 1.4.5. Rephrasing the results of 1.4.2, the matrices ξ1 =
[
43 0 0

]
and ξ2 =

[
41 1 0

]
give rise to two distinct solutions of the matrix equation of Example 1.4.4. On the other hand,

put into the language of matrix equations, the information that 22 = x1 + 2x2 and 15 = x1 + x2

can be most efficiently synthesized by viewing the coefficients of these linear equations as rows

of a matrix. Explicitly, we construct a matrix A whose first row is
[
1 2

]
, corresponding to the

respective coefficients of x1 and x2 in the equation 22 = x1+2x2; the second row of the matrix A is[
1 1

]
, corresponding to the respective coefficients of x1 and x2 in the equation 15 = x1 + x2. Once

again, the column vector x consists of the variables x1 and x2 in distinct rows, and the column

vector b consists of the integers 22 and 15 in distinct rows. Ultimately, yields the matrix equation

Ax = b or

[
1 2

1 1

] [
x1

x2

]
=

[
22

15

]
.

Once we have extracted an m× n matrix equation Ax = b from a (real) m× n system of linear

equations, our immediate objective is to determine the matrix analog of solving the system. Before

we do this, we declare the following three valid operations for systems of linear equations.

Definition 1.4.6 (Elementary Row Operations). Given any (real) m×n system of linear equations,

the following arithmetic operations are permissible to perform on the system.

1.) We may multiply the ith equation by a nonzero (real) scalar c.

2.) We may add c times the ith equation to the jth equation for all integers 1 ≤ i, j ≤ m.

3.) We may interchange the ith and jth equations for all integers 1 ≤ i, j ≤ m.

Consequently, we are looking for matrix analogs of the above three arithmetic operations. Con-

sidering that the coefficients of ith equation are encoded in the ith row of the matrix A and the ith

row of the matrix b, we may rather consider the augmented matrix
[
A b

]
. By definition, this

is simply the matrix A with one additional column in the form of b. We use the bar | notation to

emphasize that b is appended as the rightmost column of the matrix A and not originally a column

of A. By definition of matrix multiplication, operation (1.) is analogous to left multiplication by

the m×m matrix with (i, i)th entry c; 1 in all other entries of the main diagonal; and 0s elsewhere.

1.) Multiplication of the ith row of an m×n system of linear equations by a scalar c corresponds

to left multiplication of the m× (n+1) augmented matrix
[
A b

]
by the m×m matrix with

c in row i, column i; 1 in all other entries of the main diagonal; and 0s elsewhere.

Example 1.4.7. We obtain the following augmented matrix for the matrices of Example 1.4.5.

[
A b

]
=

[
1 2 22

1 1 15

]
Consequently, to scale the first equation x1+2x2 = 22 by a factor of c, we multiply this augmented

matrix by the 2× 2 matrix with c in row 1, column 1; 1 in row 2, column 2; and 0s elsewhere.[
c 2c 22c

1 1 15

]
=

[
c 0

0 1

] [
1 2 22

1 1 15

]
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Likewise, operation (2.) is analogous to left multiplication by the m×m matrix with c in row

j, column i; 1s along the main diagonal; and 0s elsewhere. Explicitly, we obtain the following rule.

2.) Addition of c times the ith row of an m× n system of linear equations to the jth row of the

system corresponds to left multiplication of the m × (n + 1) matrix
[
A b

]
by the m × m

matrix with c in row j, column i; 1s along the main diagonal; and 0s elsewhere.

Example 1.4.8. Consider the augmented matrix
[
A b

]
of Example 1.4.7. Observe that in order

to subtract the first equation x1 + 2x2 = 22 from the second equation x1 + x2 = 15, it suffices to

add −1 times the first equation to the second equation. By the previous observation, this can be

achieved on the level of matrices by performing the following matrix multiplication.[
1 2 22

0 −1 −7

]
=

[
1 0

−1 1

] [
1 2 22

1 1 15

]
Last, operation (3.) is analogous to left multiplication by the m ×m matrix with (i, j)th and

(j, i)th entries of 1; 1s along the main diagonal other than in rows i and j; and 0s elsewhere.

3.) Interchanging rows i and j of an m× n system of linear equations corresponds to left multi-

plication of the m× (n + 1) matrix
[
A b

]
by the m×m matrix with 1 in row j, column i;

1 in row i, column j; 1s along the main diagonal other than rows i and j; and 0s elsewhere.

Example 1.4.9. Once again, consider the augmented matrix
[
A b

]
of Example 1.4.7. We may

interchange the first equation x1 + 2x2 = 22 and the second equation x1 + x2 = 15 as follows.[
1 1 15

1 2 22

]
=

[
0 1

1 0

] [
1 2 22

1 1 15

]
Collectively, we refer to the operations of Definition 1.4.6 as elementary row operations; the

matrices defined by operations (1.), (2.), and (3.) are therefore called the m×m elementary row

matrices. Explicitly, an elementary row matrix is an m × m matrix obtain by from the m × m

identity matrix Im by (1.) multiplying any row of Im by a nonzero scalar c; (2.) adding c times the

ith row of Im to the jth row of Im; or (3.) interchanging rows i and j of Im.

Likewise, the operations of Definition 1.4.6 can be defined for the columns of a matrix to obtain

the elementary column operations and the elementary column matrices: we need only swap

all instances of “rows” with “columns” and “left multiplication” with “right multiplication.”

We will soon see that performing elementary row and column operations on a system of linear

equations does not affect the solutions to the system, hence it does not alter the solutions of the

underlying matrix equation. Even more, if we employ a sequence of elementary row and column

operations to reduce a given augmented matrix to a “relatively simple” form and subsequently in-

terpret the resulting augmented matrix “correctly,” then we can easily read off all possible solutions

to the underlying system of linear equations. We illustrate this in the case of Example 1.4.8.

Example 1.4.10. Consider the augmented matrix
[
A b

]
of Example 1.4.8. Converting this back

into a system of equations, the second row of the augmented matrix yields that −x2 = −7, hence

we conclude that x2 = 7. Consequently, the first row gives that 22 = x1 + 2x2 = x1 + 14 or x1 = 8.

We refer to this as the method of solving a system of linear equations via back substitution.
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Going forward, we will say that two matrices A and B are row equivalent if and only if A can

be reduced to B via a sequence of elementary row operations if and only if there exist elementary

row matrices E1, . . . , Ek such that B = Ek · · ·E1A. Likewise, we make the analogous definition for

column equivalent matrices. We will write A ∼ B if A and B are either row or column equivalent.

Example 1.4.11. By Example 1.4.8 of the previous section, we have that

A =

[
1 2

1 1

]
and B =

[
1 2

0 −1

]

are row equivalent because B = EA for the elementary row matrix E =

[
1 0

−1 1

]
.

By Example 1.4.10, it is clearly advantageous (when possible) to perform a sequence of elemen-

tary row operations to reduce a matrix A to a matrix B in which some row has the property that

all but one of its entries is nonzero: in this case, the row of B consisting of a single nonzero entry

can be used to further reduce A to a matrix possessing more zero entries, as we illustrate next.

Example 1.4.12. Consider the row equivalent matrices A and B of Example 1.4.11. Observe that

if we add twice the second row of B to the first row of B, then we obtain the matrix

C =

[
1 0

0 −1

]
=

[
1 2

0 1

] [
1 2

0 −1

]
.

Certainly, matrices with more zero entries are easier to interpret as the collection of coefficients

corresponding to some system of linear equations because the variables corresponding to the zeros

of the ith row of the matrix do not appear in the ith equation of the system. Even more, the zeros

of a matrix inform us about other important properties of the matrix that we will soon discuss.

Consequently, we turn our attention in this section to an algorithm that we may employ to reduce

a given matrix A to a row equivalent matrix consisting of as many zeros as possible.

We say that a row of an m× n matrix A is nonzero if it contains (at least) one nonzero entry.

Definition 1.4.13. We say that a (real) m× n matrix A lies in row echelon form if and only if

1.) all rows of A consisting entirely of zeros lie beneath the last nonzero row of A and

2.) for any pair of consecutive nonzero rows i and i+1, the first nonzero entry of row i+1 lies in

some column strictly to the right of the column in which the first nonzero entry of row i lies.

Given that A lies in row echelon form, the first nonzero entry of a nonzero row of A is a pivot.

Example 1.4.14. Consider the following real matrices.

A =

1 2

0 4

0 0

 B =

1 1 0 0 0

0 0 1 2 0

0 0 0 0 1

 C =

[
−1 −1

−1 −1

]

Both A and B lie in row echelon form; however, C does not lie in row echelon form because the first

nonzero entry of its second row lies in the column directly below the first nonzero of its first row.



1.4. LINEAR SYSTEMS OF EQUATIONS AND GAUSSIAN ELIMINATION 29

We have encountered other instances of matrices in row echelon form, as well: the matrices

B of Example 1.4.11 and C of Example 1.4.12 lie in row echelon form; however, the matrix A of

Example 1.4.11 does not lie in row echelon form because the first nonzero entry of the second row

of A lies directly below the first nonzero entry of the first row of A. Even more, the pivots of the

aforementioned matrix B (and C) are 1 in the first row and −1 in the second row. Crucially, the

following theorem assures us that it is always possible to reduce any matrix to row echelon form.

Theorem 1.4.15. Every real matrix is row equivalent to a real matrix in row echelon form.

Proof. Consider any real m × n matrix A. Begin by relocating all rows of A consisting entirely of

zeros to the bottom of the matrix; interchanging rows corresponds to multiplying on the left by an

elementary row matrix, hence the resulting matrix is row equivalent to A. We may disregard all

columns of A consisting entirely of zeros because the columns of A do not bear on the row echelon

form of A, hence we may assume that the first column of A is nonzero; then, we may find the first

nonzero row of A for which the entry in first column of A is nonzero. By interchanging this row

with the first row of A, we may ultimately assume that our m× n matrix A has the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


in which the lowermost rows could consist of zeros and a11 is nonzero by assumption. Every nonzero

real number has a multiplicative inverse, hence we may subtract ai1a
−1
11 times the first row from the

ith row; this corresponds to left multiplication by an elementary row matrix and yields that

A ∼


a11 a12 · · · a1n
0 b22 · · · b2n
...

...
...

0 bm2 · · · bmn


for some real numbers b22, . . . , bmn. Employing this process with the (m− 1)× (n− 1) submatrix

B =

 b22 · · · b2n
...

...

bm2 · · · bmn


and subsequently continuing in this manner, we will eventually reduce A to row echelon form.

Definition 1.4.16. We say that a matrix lies in reduced row echelon form if and only if

1.) it lies in row echelon form;

2.) its pivots are all 1; and

3.) if the jth column contains a pivot, then all of its non-pivot entries are zero. Put another way,

the only nonzero entry of any column containing a pivot is the pivot itself.
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Corollary 1.4.17. Every real matrix is row equivalent to a real matrix in reduced row echelon form.

Proof. By Theorem 1.4.15, every real matrix A is row equivalent to a real matrix B in row echelon

form. By multiplying each nonzero row of B by the multiplicative inverse of its pivot, we obtain a

row equivalent matrix C whose pivots are all 1. Last, we must ensure that the only nonzero entry of

any column containing a pivot is the pivot itself. Observe that if cij is nonzero and the jth column

of C contains a pivot in row k, then we may add −cij times the kth row of C to the ith row of C

to obtain 0 in the ith row and jth column of C. Continuing in this manner yields the result.

Essentially, the proofs of Theorem 1.4.15 and Corollary 1.4.17 outline the method of Gaussian

Elimination in systems of linear equations; for completeness, we summarize the results below.

Algorithm 1.4.18 (Gaussian Elimination). Given any nonzero real m×n matrix A, the following

steps will reduce the matrix A to a row equivalent matrix B in reduced row echelon form.

(1.) Begin by relocating all rows of A consisting entirely of zeros to the bottom of the matrix. We

may perform this operation because row interchange yields a row equivalent matrix.

(2.) Find the first nonzero row i of the matrix obtained in the previous step for which the entry

ai1 in first column is nonzero; if this is not the first row, then interchange the first and ith

rows of this matrix so that ai1 lies in the first row and column of the resulting matrix.

(3.) Multiply the first row of the resulting matrix by the multiplicative inverse a−1
i1 of the nonzero

real number ai1 to obtain an entry of 1 in the first row and first column. We may perform

this operation because multiplying a row by a nonzero scalar yields a row equivalent matrix.

(4.) If rj is the component of the jth row and first column of the matrix obtained in step (3.),

then add −rj times the first row of this matrix to the jth row of this matrix for each integer

1 ≤ j ≤ m. We may perform this operation because adding a scalar multiple of a row to

another row yields a row equivalent matrix. Observe that the only nonzero entry in the first

column of the resulting matrix is the pivot of 1 in the first row and first column.

(5.) Repeat steps (2.), (3.), (4.) for the matrix obtained from the resulting matrix of step (4.) by

ignoring the first row and first column; if possible, a pivot of 1 is obtained in the second row

of this matrix, and all entries of the matrix below this pivot are zero.

(6.) Repeat step (5.) until the row echelon form of A is obtained and all pivots are 1.

(7.) Eliminate any nonzero entry aij in row i above the pivot 1 in row k by adding −aij times the

kth row of the matrix of step (6.) to the ith row of the matrix.

(8.) Repeat step (7.) until the matrix lies in reduced row echelon form.

We refer to the matrix obtained from this process as the reduced row echelon form RREF(A).

One of the best ways to understand the method of Gaussian Elimination is to practice using it.

We illustrate the technique and its applications in the following several examples.
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Example 1.4.19. Let us convert the following matrix to reduced row echelon form.

A =

 2 −3 7

−1 0 3

2 1 5


Considering that each of the rows of A is nonzero, we may immediately proceed to the second step

of the Gaussian Elimination algorithm. Observe that the first nonzero row of A for which the entry

in the first column is nonzero is simply the first row of A, so we may proceed to the third step of

the algorithm. Explicitly, we multiply the first row of A by 1
2
(i.e., the multiplicative inverse of 2)

to obtain an entry of 1 in the first row and first column of A. We illustrate this as follows.

A =

 2 −3 7

−1 0 3

2 1 5

 1
2
R1 7→R1∼

 1 −3
2

7
2

−1 0 3

2 1 5


We may subsequently reduce all first column entries beneath the first row of the resulting matrix. 1 −3

2
7
2

−1 0 3

2 1 5

 R2+R1 7→R2∼

1 −3
2

7
2

0 −3
2

13
2

2 1 5

 R3−2R1 7→R3∼

1 −3
2

7
2

0 −3
2

13
2

0 4 3
2


We have therefore created a pivot of 1 in the first row and first column, so we proceed to do the

same for the second row and second column. Explicitly, we multiply the second row of the above

matrix by −2
3
(i.e., the multiplicative inverse of −3

2
) to obtain the following row equivalent matrix.1 −3

2
7
2

0 −3
2

13
2

0 4 3
2

 − 2
3
R2 7→R2∼

1 −3
2

7
2

0 1 −13
3

0 4 3
2


We may then create a pivot of 1 in the second row and second column of this matrix by adding −4

times the second row to the third row, reducing the entry in the third row and second column to 0.1 −3
2

7
2

0 1 −13
3

0 4 3
2

 R3−4R2 7→R3∼

1 −3
2

7
2

0 1 −13
3

0 0 95
6


Last, we obtain a pivot of 1 in the third row and third column by multiplying by the multiplicative

inverse 6
95

of 95
6
. Ultimately, we obtain the row echelon form of A for which all pivots are 1.1 −3

2
7
2

0 1 −13
3

0 0 95
6

 6
95

R3 7→R3∼

1 −3
2

7
2

0 1 −13
3

0 0 1


We proceed to the seventh and eighth steps of the Gaussian Elimination algorithm. Because there

is a pivot in the second row, we eliminate first the nonzero non-pivot entries in the second column.1 −3
2

7
2

0 1 −13
3

0 0 1

 R1+
3
2
R2 7→R1∼

1 0 −3

0 1 −13
3

0 0 1


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Once this is accomplished, we put the matrix in reduced row echelon form as follows.1 0 −3

0 1 −13
3

0 0 1

 R1+3R3 7→R1∼

1 0 0

0 1 −13
3

0 0 1

 R2+
13
3
R3 7→R2∼

1 0 0

0 1 0

0 0 1


Ultimately, the method of Gaussian Elimination illustrates that our original matrix A is in fact row

equivalent to the 3× 3 identity matrix. We will see in the next section that row equivalence to the

n× n identity matrix is a very important and special property of a square matrix.

Before we conclude this section, we provide two examples that illustrate how all of the topics

we have discussed in this section come to bear on the theory of systems of linear equations.

Example 1.4.20. Consider the following real 3× 4 system of linear equations.

x1 + x2 + x3 + x4 = 3

x1 + 2x3 + 3x4 = 4

x2 + x4 = 5

Converting this system of linear equations into a matrix equation by taking the coefficients of each

linear equation as the entries of a 3× 4 matrix A, expressing the variables x1, . . . , x4 as the rows of

a 4×1 column vector, and writing the right-hand side as a 3×1 column vector yields the following.

1 1 1 1

1 0 2 3

0 1 0 1



x1

x2

x3

x4

 =

34
5


Consequently, in order to solve this system of linear equations, it suffices to convert the following

3× 5 augmented matrix into its reduced row echelon form by the method of Gaussian Elimination.1 1 1 1 3

1 0 2 3 4

0 1 0 1 5

 R2−R1 7→R2∼

1 1 1 1 3

0 −1 1 2 1

0 1 0 1 5

 R2↔R3∼

1 1 1 1 3

0 1 0 1 5

0 −1 1 2 1

 R3+R2 7→R3∼

1 1 1 1 3

0 1 0 1 5

0 0 1 3 6



R1−R3 7→R1∼

1 1 0 −2 −3

0 1 0 1 5

0 0 1 3 6



R1−R2 7→R1∼

1 0 0 −3 −8

0 1 0 1 5

0 0 1 3 6


Consequently, the 3× 4 system is equivalent to the following system in reduced row echelon form.

x1 − 3x4 = −8

x2 + x4 = 5

x3 + 3x4 = 6
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We obtain the general solution of this system by expressing each of the three variables x1, x2, and

x3 in terms of the free variable x4. Crucially, observe that the general solution is given by

ξ =


x1

x2

x3

x4

 =


3x4 − 8

−x4 + 5

−3x4 + 6

x4

 = x4


3

−1

−3

1

+


−8

5

6

1

.
Consequently, for each assignment of a real number to the free variable x4, we obtain a unique

solution ξ. Ultimately, this system of linear equations admits infinitely many solutions, and each

solution is determined by the value of x4 by the above equation. Below are two particular solutions.

If x4 = 0, then the particular solution to the system is given by ξ =


−8

5

6

1

.

If x4 = 3, then the particular solution to the system is given by ξ =


1

2

−3

3

.
Considering that this system of linear equations admits a solution, we say the system is consistent.

Example 1.4.21. Consider the following real 4× 3 system of linear equations.

x1 + 2x2 + 3x3 = 0

4x1 + 5x2 + 6x3 = 1

7x1 + 8x2 + 9x3 = 0

We obtain an augmented matrix
[
A b

]
called the coefficient matrix corresponding to this system

of linear equations by writing down the coefficients of the variables. Each equation is a distinct row.

Each variable induces a distinct column. Explicitly, we obtain the following coefficient matrix.1 2 3 0

4 5 6 1

7 8 9 0


We proceed to convert the matrix to reduced row echelon form via Gaussian Elimination.1 2 3 0

4 5 6 1

7 8 9 0

 R2−4R1 7→R2
R3−7R1 7→R3∼

1 2 3 0

0 −3 −6 1

0 −6 −12 0

 R3−2R2 7→R3∼

1 2 3 0

0 −3 −6 1

0 0 0 −2


We note that from this step, it can be determined that this system of linear equations is inconsis-

tent, i.e., it has no solution. Explicitly, observe that the third row of the above augmented matrix

implies (on the level of linear equations) that 0 = 0x1 + 0x2 + 0x3 = −2 — a contradiction.1 2 3 0

0 −3 −6 1

0 0 0 −2

 − 1
2
R3 7→R3

− 1
3
R2 7→R2∼

1 2 3 0

0 1 2 −1
3

0 0 0 1

 R2+
1
3
R3 7→R2∼

1 2 3 0

0 1 2 0

0 0 0 1

 R1−2R2 7→R1∼

1 0 −1 0

0 1 2 0

0 0 0 1


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1.5 Inverses of Square Matrices

We will assume throughout this section that n is a positive integer. Given any n× n matrix A, we

say that an n×n matrix L is a left inverse of A if it holds that LA = I, where we denote by I the

n× n identity matrix. Likewise, we say that an n× n matrix R is a right inverse of A if it holds

that AR = I. We will establish immediately that every left inverse of A is also a right inverse and

vice-versa, hence we may dispense of the distinct notions of left and right inverses of matrices and

simply say that an n × n matrix B is a (two-sided) inverse of an n × n matrix A if it holds that

AB = I = BA. Our next proposition shows that a two-sided inverse of a matrix A is unique.

Proposition 1.5.1. Let A be any n×n matrix. Every left inverse of A is a right inverse of A and

vice-versa (provided that both exist). Even more, if A admits a two-sided inverse, then it is unique.

Proof. Consider any n × n matrices L and R such that LA = I = AR. By Proposition 1.3.21, we

have that R = IR = (LA)R = L(AR) = LI = L. Consequently, L is a two-sided inverse of A. Even

more, if L′ is any two-sided inverse of A, then it is a right inverse of A so that L′ = L.

Consequently, if an n× n matrix A admits a (two-sided) inverse, then it is unique, and we may

denote it by A−1.We will also say in this case that A is invertible (or non-singular). Certainly, the

zero matrix does not possess an inverse, hence some (and in fact many) matrices are not invertible.

We explore next how matrix inverses behave with respect to the matrix operations of Section 1.3.

Proposition 1.5.2. If A is an invertible n×n matrix, then (AT )−1 = (A−1)T . Put another way, if

A is invertible, then AT is invertible, and its matrix inverse is the transpose of A−1.

Proof. By Proposition 1.3.24, it follows that (A−1)TAT = (AA−1)T = IT = I, and we conclude that

(AT )−1 = (A−1)T by the uniqueness of the matrix inverse guaranteed by Proposition 1.5.1.

Proposition 1.5.3. If A1, . . . , Ak are any invertible n× n matrices, then

(A1 · · ·Ak)
−1 = A−1

k · · ·A−1
1 .

Put another way, the product of invertible n × n matrices is an invertible matrix, and the matrix

inverse of the product is the product of the matrix inverses in reverse order.

Proof. By Proposition 1.5.1, it suffices to verify that (A−1
k · · ·A−1

1 )(A1 · · ·Ak) = I. Considering that

A−1
i Ai = I for all integers 1 ≤ i ≤ k, we may replace every instance of A−1

i Ai with I; then, using

the fact that IB = B for any n× r matrix B, the result follows after repeating this k times.

Corollary 1.5.4. If A is an invertible n× n matrix, then Ak is invertible for all integers k ≥ 0.

Proof. By Proposition 1.5.3, it follows that Ak is invertible with (Ak)−1 = (A−1)k.

Corollary 1.5.5. If A and B are row equivalent, then A is invertible if and only if B is invertible.

Proof. By definition, an n× n matrix A is row equivalent to the matrix B if and only if there exist

elementary row matrices E1, . . . , Ek such that B = Ek · · ·E1A. Considering that A = E−1
1 · · ·E−1

k B,

we conclude that A is invertible if and only if B is invertible by Propositions 1.5.3 and 1.5.6.
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Using the method of Gaussian Elimination, we can determine if an n × n matrix A admits an

inverse, and we may subsequently compute A−1 in this way, as well. Before we demonstrate this, we

remind the reader that two matrices are row equivalent if and only if there exist some elementary

row matrices whose product (on the left) of one matrix gives the other. Explicitly, we have that A

and B are row equivalent if and only if there exist elementary row matrices E1, . . . , Ek such that

B = Ek · · ·E1A. Elementary row matrices are precisely those n × n matrices obtained from the

n× n identity matrix by performing (at most) one of the following matrix operations.

1.) We may multiply any row of I by a nonzero scalar c.

2.) We may add c times the ith row of I to the jth row of I.

3.) We may interchange any pair of rows i and j of I.

We refer to the above operations as the Elementary Row Operations.

Proposition 1.5.6. Every elementary row matrix is invertible.

Proof. Let E be an elementary row matrix. Consider the following three cases.

1.) If E is obtained from I by multiplying the ith row of I by a nonzero scalar c, then E−1 is

obtained from I by multiplying the ith row of I by the nonzero scalar c−1.

2.) If E is obtained from I by adding c times the ith row of I to the jth row of I, then E−1 is

obtained from I by adding −c times the ith row of I to the jth row of I.

3.) If E is obtained from I by interchanging rows i and j of I, then E is its own inverse.

Before we provide several equivalent criteria for the invertibility of a square matrix or establish

how to compute a matrix inverse, it is imperative to discuss how theory of systems of linear equations

comes to bear on the theory of invertible matrices. Consider the matrix equation Ax = b for some

real n× n matrix A, the real n× 1 column vector x whose ith row is a variable xi, and some real

n× 1 column vector b. Crucially, we note that if A is row equivalent to the n× n identity matrix

I, then the matrix equation Ax = b is consistent (i.e., it admits a solution): indeed, if there exist

elementary row matrices E1, . . . , Ek such that Ek · · ·E1A = I, then we have that

x = Ix = (Ek · · ·E1A)x = Ek · · ·E1(Ax) = Ek · · ·E1b.

Conversely, if the matrix equation Ax = b admits a solution, then A must be row equivalent to the

identity matrix. We establish this as follows using a proof by contrapositive.

Theorem 1.5.7. Given any real n × n matrix A, the matrix equation Ax = b admits a solution

for every real n× 1 matrix b if and only if A is row equivalent to the n× n identity matrix.

Proof. By the paragraph preceding the statement of the theorem, if A is row equivalent to the n×n

identity matrix, then the matrix equation Ax = b admits a unique solution for every n×1 matrix b.

Conversely, we will assume that A is not row equivalent to the n×n identity matrix. Consequently,

the nth row of the reduced row echelon form RREF(A) of the matrix A must be zero. Even more,

there exist elementary row matrices E1, . . . , Ek such that RREF(A) = Ek · · ·E1A. By Proposition
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1.5.6, each of the n× n matrices E1, . . . , Ek is invertible, hence their product Ek · · ·E1 is invertible

by Proposition 1.5.3. Consider the real n× 1 matrix b = (Ek . . . E1)
−1en for the nth standard basis

vector en that consists of zeros in each of the first n− 1 rows and 1 in the nth row. Observe that

the matrix equation Ax = b has no solution: indeed, by construction, we have that

RREF(A)x = (Ek · · ·E1A)x = Ek · · ·E1(Ax) = Ek · · ·E1b = en.

Considering that the nth row of RREF(A)x is 0 and the nth row of en is 1, we have established that

it is impossible to obtain a real n× 1 matrix x for which the matrix equation Ax = b holds.

By virtue of Theorem 1.5.7, it follows that any left inverse of an n × n matrix must be a right

inverse, as well. Consequently, the invertibility of a square matrix can be determined by checking

whether the matrix can be reduced to the identity matrix. Even more, the unique matrix inverse

of a matrix that is row equivalent to the identity matrix is simply the product of the elementary

matrices required to put the matrix in reduced row echelon form. We prove this as follows.

Theorem 1.5.8. Given any n× n matrices A and B, we have that AB = I if and only if BA = I.

Explicitly, any left inverse of a square matrix is the unique inverse of the matrix.

Proof. We will assume first that AB = I, and we will demonstrate that BA = I. Conversely, we

may simply reverse the roles of A and B to find that if BA = I, then AB = I. Given any n × 1

matrix b, the matrix equation Ax = b admits a solution ξ = Bb: indeed, we have that

Aξ = A(Bb) = (AB)b = Ib = b.

By Theorem 1.5.7, it follows that A is row equivalent to the n×n identity matrix, hence there exist

elementary row matrices E1, . . . , Ek such that Ek · · ·E1A = I. By Proposition 1.5.1, in view of the

fact that Ek · · ·E1 is a left inverse of A, it follows that Ek · · ·E1 is the unique inverse of A.

Conversely, we demonstrate that every invertible matrix is row equivalent to the identity matrix.

By Corollary 1.4.17, a matrix is row equivalent to its reduced row echelon form. By Corollary 1.5.5,

an n×n matrix A is invertible if and only if RREF(A) is invertible. Particularly, if RREF(A) admits

any rows consisting entirely of zeros, then it is not invertible (because the last row of RREF(A)B

is zero for all n× r matrices B), hence the underlying matrix A cannot be invertible. On the other

hand, we will establish that if all rows of RREF(A) are nonzero, then it is invertible, hence A is

invertible. Before this, we mention that an upper-triangular matrix is an n × n matrix with

the property that the (i, j)th component of the matrix is zero for all integers 1 ≤ i < j ≤ n. Put

another way, all entries below the main diagonal of an upper-triangular matrix are zero.

Theorem 1.5.9. Every upper-triangular matrix with nonzero diagonal elements is invertible.

Proof. By definition, every n× n upper-triangular matrix U can be written as follows.

U =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

0 0 · · · ann


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By hypothesis that aii is nonzero for each integer 1 ≤ i ≤ n, we may multiply the ith row of the

above matrix by a−1
ii to obtain an upper-triangular matrix whose pivots are all 1. Each of these

products corresponds to multiplication of U (on the left) by an elementary row matrix, hence this

process does not come to bear on the existence of an inverse of U. Consequently, we may assume

from the beginning that this is the case, i.e., we may restrict our attention to the following situation.

U =


1 a12 · · · a1n
0 1 · · · a2n
...

...
...

0 0 · · · 1


By Corollary 1.5.5, it suffices to demonstrate that U is row equivalent to the invertible n × n

identity matrix I. We achieve this by furnishing some elementary row operations that reduces U to

I. Observe that if we add −ain times the last row of U to the ith row of U, then we obtain a 0 in the

(i, n)th component of the resulting matrix. Continuing in this way, we may reduce the nth column

of U to zero except in the bottom right-hand corner. Considering that adding any scalar multiple

of a row of U to another row of U is a row equivalence, we conclude that U is row equivalent to

this matrix. Continuing in this way for each column of U from right to left, it follows that U is row

equivalent to the identity matrix. By Theorem 1.5.8, we conclude that U is invertible.

Corollary 1.5.10 (Invertibility Criterion). Given any n×n matrix A, we have that A is invertible

if and only if it is row equivalent to the n× n identity matrix.

Proof. By Theorems 1.5.7 and 1.5.8, a matrix that is row equivalent to the identity matrix must

be invertible. Conversely, by Proposition 1.5.5, Theorem 1.5.9, and the paragraph that precedes

the theorem, an n × n matrix A is invertible if and only if the upper-triangular matrix RREF(A)

is invertible if and only if RREF(A) = I. Consequently, if A is an invertible n × n matrix, then

there exist elementary row matrices E1, . . . , Ek such that Ek · · ·E1A = I, from which we conclude

by Theorem 1.5.7 that the unique inverse of A is given by A−1 = Ek · · ·E1.

Corollary 1.5.11. Every invertible n× n matrix is a product of elementary row matrices.

Proof. By the proof of Corollary 1.5.10, every invertible n×n matrix A admits some elementary row

matrices E1, . . . , Ek such that Ek · · ·E1A = I. By multiplying both sides on the left by E−1
1 · · ·E−1

k ,

we obtain that A = E−1
1 · · ·E−1

k . By the proof of Proposition 1.5.6, each of the matrices E−1
1 , . . . , E−1

k

is an elementary row matrix, hence A is the product of elementary row matrices.

Generally, the method of Gaussian Elimination can in practice be implemented to determine if

a square matrix is invertible and to explicitly produce the inverse of such a matrix. Observe that if

A is an n× n matrix, then we may construct the augmented matrix
[
A I

]
by adjoining the n× n

identity matrix I on the right-hand side of A. By performing elementary row operations, we may

reduce A to its reduced row echelon form RREF(A). Consequently, if A is invertible, this will reduce

A to I and simultaneously convert I to A−1. Explicitly, this process yields that
[
A I

]
∼

[
I A−1

]
.

Example 1.5.12. Consider the following 2× 2 matrix A and the augmented matrix
[
A I

]
.

A =

[
1 2

3 5

] [
A I

]
=

[
1 2 1 0

3 5 0 1

]
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We will carry out the Gaussian Elimination as follows, listing each elementary row operation.[
1 2 1 0

3 5 0 1

]
R2−3R1 7→R2∼

[
1 2 1 0

0 −1 −3 1

]
−R2 7→R2∼

[
1 2 1 0

0 1 3 −1

]
R1−2R2 7→R1∼

[
1 0 −5 2

0 1 3 −1

]
Consequently, we find that A is an invertible 2× 2 matrix with the following matrix inverse.

A−1 =

[
−5 2

3 −1

]
Example 1.5.13. Consider the following 3× 3 matrix A and the augmented matrix

[
A I

]
.

A =

1 1 1

1 1 2

1 2 2

 [
A I

]
=

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1


We will carry out the Gaussian Elimination as follows, listing each elementary row operation.1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1

 R2−R1 7→R2
R3−R1 7→R3∼

1 1 1 1 0 0

0 0 1 −1 1 0

0 1 1 −1 0 1

 R2↔R3∼

1 1 1 1 0 0

0 1 1 −1 0 1

0 0 1 −1 1 0



R1−R3 7→R1
R2−R3 7→R2∼

1 1 0 2 −1 0

0 1 0 0 −1 1

0 0 1 −1 1 0



R1−R2 7→R1∼

1 0 0 2 0 −1

0 1 0 0 −1 1

0 0 1 −1 1 0


By the paragraph preceding Example 1.5.12, we conclude that the inverse of A is given as follows.

A−1 =

 2 0 −1

0 −1 1

−1 1 0


Example 1.5.14. Let us determine a numerical criterion for which a real 2× 2 matrix is invertible

by performing Gaussian Elimination to obtain the reduced row echelon form. Consider any matrix

A =

[
a b

c d

]
such that a, b, c, and d are real numbers. Observe that if a = 0 and c = 0, then A is not invertible

because the first row of the matrix BA will be zero for all real m× 2 matrices B. Consequently, we

may assume that a is nonzero. By multiplying the first row of A by a−1, we obtain the following.

A =

[
a b

c d

]
a−1R1 7→R1∼

[
1 a−1b

c d

]
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Equivalently, the displayed matrix above is E1A for the following elementary row matrix

E1 =

[
a−1 0

0 1

]
We may subsequently create a pivot in the first row and first column of E1A by adding −c times

the first row of E1A to the second row of E1A. Explicitly, we obtain the following.

E1A =

[
1 a−1b

c d

]
R2−cR1 7→R2∼

[
1 a−1b

0 d− a−1bc

]
Equivalently, the displayed matrix above is E2E1A for the following elementary row matrix.

E2 =

[
1 0

−c 1

]
Observe that if d− a−1bc = 0, then the last row of E2E1A is zero, hence it is not invertible so that

A is not invertible. Consequently, we must have that d− a−1bc is nonzero, i.e., we must have that

ad− bc is nonzero. Continuing onward, because d− a−1bc is nonzero, it possesses a multiplicative

inverse (d− a−1bc)−1. By multiplying the last row of E2E1A by (d− a−1bc)−1, obtain the following.

E2E1A =

[
1 a−1b

0 d− a−1bc

]
(d−a−1bc)−1R2 7→R2∼

[
1 a−1b

0 1

]
Equivalently, the displayed matrix above is E3E2E1A for the following elementary row matrix.

E3 =

[
1 0

0 (d− a−1bc)−1

]
Last, by adding −(d− a−1bc)−1 times the second row of A to the first row of A, we obtain a pivot

in the second row and second column. Explicitly, if we multiply E3E2E1A on the left by

E4 =

[
1 −a−1b

0 1

]
,

then we obtain E4E3E2E1A = I2×2 so that A−1 = E4E3E2E1. Explicitly, the following holds.

A−1 =

[
1 −a−1b

0 1

] [
1 0

0 (d− a−1bc)−1

] [
1 0

−c 1

] [
a−1 0

0 1

]
=

1

ad− bc

[
d −b

−c a

]
Consequently, our original matrix A is invertible if and only if ad− bc is nonzero.

1.6 Real Vector Subspaces and Bases

Consider any real m× n matrix A, any real n× 1 matrix x, and any real m× 1 matrix b. We say

that the matrix equation Ax = b is homogeneous if b = 0; otherwise, this matrix equation is

non-homogeneous. Every homogeneous matrix equation Ax = 0 is consistent: indeed, the zero

vector 0 satisfies that A0 = 0, hence it is a trivial solution of the matrix equation. Elsewhere,



40 CHAPTER 1. VECTORS AND MATRICES

the nonzero solutions of the matrix equation Ax = 0 are referred to as non-trivial solutions.

Crucially, any linear combination of non-trivial solutions of a homogeneous matrix equation Ax = 0

forms a solution of the matrix equation: for if Aξ1 = 0 and Aξ2 = 0, then for any real numbers α1

and α2, it follows by the Distributive Law for Matrix Multiplication (Proposition 1.3.22) that

A(α1ξ1 + α2ξ2) = α1(Aξ1) + α2(Aξ2) = α10+ α20 = 0.

We summarize the above exposition in the following proposition.

Proposition 1.6.1. Every linear combination of solutions of a homogeneous matrix equation con-

stitutes a solution of the matrix equation. Explicitly, if ξ1 and ξ2 are solutions to the matrix equation

Ax = 0, then for any real numbers α1 and α2, it follows that α1ξ1 + α2ξ2 is another solution.

Collections of vectors with the property that any linear combination of vectors in the collection

is itself a member of the collection form an important class of objects in linear algebra.

Definition 1.6.2. Given any nonempty collection W of vectors in real n-space, we will say that W

forms a subspace of real n-space if both of the following conditions hold.

1.) We have that W is closed under addition, i.e., v +w lies in W if v and w lie in W.

2.) We have that W is closed under scalar multiplication, i.e., αv lies in W if v lies in W.

Example 1.6.3. One can readily verify that the zero subspace {0} is a subspace of real n-space

and the totality of real n-space Rn is a subspace of real n-space. We refer to these as the trivial

subspaces of real n-space because they represent most extreme subspaces of real n-space.

Example 1.6.4. By Proposition 1.6.1, for any real m × n matrix A, the collection of solutions of

the homogeneous matrix equation Ax = 0 constitutes a subspace of real n-space. We refer to this

as the null space of the matrix A, and we denote this by null(A) = {v ∈ Rn | Av = 0}.
Example 1.6.5. Consider the collection W = {[x,−x] | x ∈ R} of vectors in real 2-space such that

the second coordinate is equal in absolute value to the first coordinate but opposite in sign.

1.) Given any real numbers x and y, observe that

[x,−x] + [y,−y] = [x+ y,−x− y] = [x+ y,−(x+ y)].

Consequently, it follows that W is closed under addition.

2.) Given any real numbers x and α, observe that

α[x,−x] = [αx, α(−x)] = [αx,−(αx)].

Consequently, it follows that W is closed under scalar multiplication.

By Definition 1.6.2, we conclude that W is a subspace of real 2-space.

Example 1.6.6. Consider the collection W = {[x, 2x− 3] | x ∈ R} of vectors in real 2-space lying

in standard position and coinciding with the line y = 2x− 3. Observe that the vectors [0,−3] and

[1,−1] lie in W because they terminate at a point on the line y = 2x−3; however, their sum [1,−4]

does not lie in W because it is not true that y = 2x− 3, so W is not a subspace of real 2-space.



1.6. REAL VECTOR SUBSPACES AND BASES 41

Even more, our next proposition illustrates that the span of any collection of vectors in real

n-space forms a subspace of real n-space. We may then view Example 1.6.5 as a special case of

this: indeed, the real vectors [x,−x] = x[1,−1] are precisely the vectors in span{[1,−1]}.

Proposition 1.6.7 (Subspace Property of Span). Given any vectors v1,v2, . . . ,vk in real n-space,

we have that W = span{v1,v2, . . . ,vk} is a subspace of real n-space.

Proof. Conventionally, the span of the empty set is the zero vector, hence the span of no vectors

in real n-space is the zero subspace. Consequently, we may assume that n ≥ 1. By definition of

the span of vectors, every vector of W is of the form u = α1v1 + α2v2 + · · · + αkvk for some real

numbers α1, α2, . . . , αk, hence for any real number α, we have that

αu = α(α1v1 + α2v2 + · · ·+ αkvk) = (αα1)v1 + (αα2)v2 + · · ·+ (ααk)vk

lies in W so that W is closed under scalar multiplication. Likewise, for any vector of W of the form

w = β1v1 + β2v2 + · · ·+ βkvk, the vector u+w satisfies that

u+w = (α1 + β1)v1 + (α2 + β2)v2 + · · ·+ (αk + βk)vk,

hence W is closed under addition. We conclude by Definition 1.6.2 that W is a subspace of Rn.

Every subspace of real n-space can in fact be realized as the span of some vectors in real n-space

(or possibly none at all). We will not prove this yet, but we use it as our guide in the following.

Example 1.6.8. Compute the null space of the following real matrix.

A =


1 2 3 4

5 6 7 8

9 8 7 6

5 4 3 2


By definition, the null space of the above matrix consists of all vectors x = [x1, x2, x3, x4] in real

4-space satisfying the homogeneous matrix equation Ax = 0, hence null(A) consists of all solutions

of the following homogeneous real system of linear equations.

x1 + 2x2 + 3x3 + 4x4 = 0

5x1 + 6x2 + 7x3 + 8x4 = 0

9x1 + 8x2 + 7x3 + 6x4 = 0

5x1 + 4x2 + 3x3 + 2x4 = 0

Bearing this in mind, the usefulness of the null space is apparent. Computing the reduced row

echelon form of the matrix A using Gaussian Elimination allows us to determine the null space as

follows. Crucially, we need not consider the augmented matrix
[
A 0

]
because the last column of

this augmented matrix consists of zeros and remains unaffected by elementary row operations.
1 2 3 4

5 6 7 8

9 8 7 6

5 4 3 2


R2−5R1 7→R2
R3−9R1 7→R3
R4−5R1 7→R4∼


1 2 3 4

0 −4 −8 −12

0 −10 −20 −30

0 −6 −12 −18


− 1

4
R2 7→R2

− 1
10

R3 7→R3

− 1
6
R4 7→R4∼


1 2 3 4

0 1 2 3

0 1 2 3

0 1 2 3


R3−R2 7→R3
R4−R2 7→R4∼


1 2 3 4

0 1 2 3

0 0 0 0

0 0 0 0


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We are now one elementary row operation from the reduced row echelon form of the matrix A.
1 2 3 4

0 1 2 3

0 0 0 0

0 0 0 0

 R1−2R2 7→R1∼


1 0 −1 −2

0 1 2 3

0 0 0 0

0 0 0 0


Considering this matrix in the context of the underlying system of equations, it follows that x3 and

x4 are free variables with which we can express x1 and x2 in terms of x3 and x4 as follows.

x1 − x3 − 2x4 = 0

x2 + 2x3 + 3x4 = 0

By solving these equations in terms of x3 and x4, it follows that x1 = x3+2x4 and x2 = −2x3−3x4.

Last, expressing these solutions as column vectors, we obtain the null space as a span of two vectors.

x =


x1

x2

x3

x4

 =


x3 + 2x4

−2x3 − 3x4

x3

x4

 =


x3

−2x3

x3

0

+


2x4

−3x4

0

x4

 = x3


1

−2

1

0

+ x4


2

−3

0

1


Consequently, it follows that null(A) = span{[1,−2, 1, 0]T , [2,−3, 0, 1]T}.

Even more, by the Subspace Property of Span, every real m × n matrix A induces two more

subspaces of real n-space: the row space of A is the subspace row(A) spanned by the rows of the

matrix A. Likewise, the column space of A is the subspace col(A) spanned by the columns of A.

Example 1.6.9. Consider the following real 2× 2 matrix and its reduced row echelon form.

A =

[
1 0

1 0

]
RREF(A) =

[
1 0

0 0

]
By definition, the row space of A is spanned by the rows of A; however, both of the rows of A are

the same vector, hence we have that row(A) = span{[1, 0]}. On the other hand, the column space of

A is spanned by the columns; however, since there is a zero column of A and the zero vector never

contributes to the span, we have that col(A) = span{[1, 1]T}. Considering the reduced row echelon

form of A in the context of the homogeneous matrix equation Ax = 0, it follows that x1 = 0 and

x2 is a free variable. Consequently, the null space of A consists of all real vectors of the form

x =

[
x1

x2

]
=

[
0

x2

]
= x2

[
0

1

]
.

We conclude therefore that null(A) = span{[0, 1]T}.
Example 1.6.10. Consider the real 3× 3 identity matrix below.

I =

1 0 0

0 1 0

0 0 1


Crucially, the rows and columns of I are the standard basis vectors e1 = [1, 0, 0], e2 = [0, 1, 0], and

e3 = [0, 0, 1] of real 3-space, hence we have that row(I) = col(I) = span{e1, e2, e3} = R3. On the

other hand, we have that Iv = 0 if and only if v = 0 so that null(I) = {0}.
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Example 1.6.11. Consider the following real 3× 4 matrix and its reduced row echelon form.

A =

1 −1 −1 0

1 1 −1 0

1 1 1 6

 RREF(A) =

1 0 0 3

0 1 0 0

0 0 1 3


By definition, the row space and column space of A are given as follows.

row(A) = span{[1,−1,−1, 0], [1, 1,−1, 0], [1, 1, 1, 6]}

col(A) = span


11
1

,
−1

1

1

,
−1

−1

1

,
00
6


Considering the reduced row echelon form of A in the context of the homogeneous matrix equation

Ax = 0, we obtain the following homogeneous system of linear equations with free variable x4.

x1 + 3x4 = 0

x2 = 0

x3 + 3x4 = 0

Consequently, the null space of A consists of all real vectors of the form

x =


x1

x2

x3

x4

 =


−3x4

0

−3x4

x4

 = x4


−3

0

−3

1

.
We conclude therefore that null(A) = span{[−3, 0,−3, 1]T}.

Generally, if a collection of vectors W in real n-space is the span of some vectors v1,v2, . . . ,vk,

we might naturally seek to determine if every vector in W can be written uniquely as a linear

combination of v1,v2, . . . ,vk. Consider the standard basis vectors e1, e2, . . . , en of real n-space:

every vector in real n-space can be written uniquely as a linear combination of e1, e2, . . . , en since

x = [x1, x2, . . . , xn] = x1e1 + x2e2 + · · ·+ xnen

and the coordinates xi uniquely determine the vector x. Generalizing to W = span{v1,v2, . . . ,vk},
if the coefficients α1, α2, . . . , αk of a vector w = α1v1 + α2v2 + · · · + αkvk in W are unique, then

we say that the coordinates of w are (α1, α2, . . . , αk) with respect to v1,v2, . . . ,vk, and we refer

to the vectors v1,v2, . . . ,vk as a basis of the subspace W of real n-space. We point out that the

terminology of “standard basis vectors” of real n-space falls under this broader definition.

Consequently, in order to determine if a collection of vectors v1,v2, . . . ,vk in real n-space form a

basis forW = span{v1,v2, . . . ,vk}, it suffices to explore the notion of “uniqueness” of the coefficients

of a linear combination of v1,v2, . . . ,vk. We will say that the vectors v1,v2, . . . ,vk are linearly

independent if and only if α1v1+α2v2+ · · ·+αkvk = 0 implies that α1 = α2 = · · · = αk = 0, i.e.,

the only linear combination of v1,v2, . . . ,vk that is the zero vector is the linear combination with all
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coefficients of zero. Conversely, if there exist scalars α1, . . . , αn not all of which are zero such that

α1v1 + α2v2 + · · · + αkvk = 0, then we say that v1,v2, . . . ,vk are linearly dependent. Observe

that in this case, there exists a nonzero scalar αi such that αivi = −α1v1 − α2v2 − · · · − αkvk and

vi = −α1α
−1
i v1−α2α

−1
i v2−· · ·−αkα

−1
i vk, i.e., the vector vi can be written as a linear combination

of the vectors v1,v2, . . . ,vk excluding vi. Consequently, any collection of vectors including the zero

vector 0 is linearly dependent, and we may restrict our attention to nonzero vectors.

Example 1.6.12. We outline a method for determining the linear independence of vectors as

follows. Consider the vectors v = [1, 1] and w = [−3, 2] of real 2-space. By definition, v and w are

linearly independent if and only if αv + βw = 0 implies that α = β = 0. Expanding this equation

by componentwise addition, we find that [α, α] + [−3β, 2β] = [0, 0] or [α − 3β, α + 2β] = [0, 0].

Observe that this equation can be viewed as the following homogeneous matrix equation.[
1 −3

1 2

] [
α

β

]
=

[
0

0

]
Explicitly, the matrix on the left-hand side is the matrix whose columns are the vectors v and w;

the scalars α and β are placed in a column vector and multiplied on the right of the matrix created

from the given vectors; and the zero vector 0 is written as a column vector equal to this matrix

product. Consequently, if the matrix whose columns are v and w is row equivalent to the 2 × 2

identity matrix I, then it will follow that α = β = 0, i.e., v and w will be linearly independent. By

the method of Gaussian Elimination, we obtain the unique reduced row echelon form as follows.[
1 −3

1 2

]
R2−R1 7→R2∼

[
1 −3

0 5

]
1
5
R2 7→R2∼

[
1 −3

0 1

]
R1+3R2 7→R2∼

[
1 0

0 1

]
We conclude therefore that v = [1, 1] and w = [−3, 2] are linearly independent.

Our previous example gives rise to the following general method for determining all linearly

independent vectors among a collection of vectors v1,v2, . . . ,vk in real n-space.

Algorithm 1.6.13 (Linear Independence Algorithm). Consider any collection of vectors v1,v2, . . . ,vk

in real n-space. Carry out the following steps to find a (not necessarily unique) collection of linearly

independent vectors of largest size among the vectors collection of vectors v1,v2, . . . ,vk. (Generally,

the vectors produced by this algorithm will depend on the order of v1,v2, . . . ,vk.)

(1.) Construct the real m× n matrix A whose jth column is the m× 1 column vector vj.

(2.) Use the method of Gaussian Elimination to convert A to its reduced row echelon form.

(3.) Every column of A that contains a pivot corresponds to a vector that is linearly independent

from all other vectors. Every column that does not possess a pivot corresponds to a vector

that can be written as a nonzero linear combination of some vectors.

Proof. Either there is a pivot in the jth column of the unique reduced row echelon form RREF(A)

of the m × n matrix A, or there is not. By definition of the reduced row echelon form, if the jth

column of RREF(A) contains a pivot, then this column must be the standard basis vector ei with 1

in row i and zeros elsewhere for some integer 1 ≤ i ≤ j; otherwise, for each integer 1 ≤ i ≤ m such
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that the (i, j)th component of RREF(A) is nonzero, there exists an integer 1 ≤ k ≤ j such that the

(i, k)th component of RREF(A) is a pivot of 1. Consequently, the jth column of RREF(A) can be

written as a nonzero linear combination of these column vectors, hence vj is linearly dependent.

Example 1.6.14. We will use the Linear Independence Algorithm to determine the linearly inde-

pendent vectors among the vectors v1 = [1, 1, 1], v2 = [−1, 1, 1], v3 = [−1,−1, 1], and v4 = [0, 0, 6].

We must construct the 3× 4 matrix whose jth column is vT
j ; then, we must subsequently convert

this matrix into its unique reduced row echelon form. We illustrate this process this as follows.1 −1 −1 0

1 1 −1 0

1 1 1 6

 (1.)∼

1 −1 −1 0

0 2 0 0

0 2 2 6

 (2.)∼

1 −1 −1 0

0 1 0 0

0 2 2 6

 (3.)∼

1 0 −1 0

0 1 0 0

0 0 2 6

 (4.)∼

1 0 0 3

0 1 0 0

0 0 1 3


(1.) We employed the elementary row operations R2 −R1 7→ R2 and R3 −R1 7→ R3.

(2.) We employed the elementary row operation 1
2
R2 7→ R2.

(3.) We employed the elementary row operations R1 +R2 7→ R1 and R3 − 2R2 7→ R3.

(4.) We employed the elementary row operations 1
2
R3 7→ R3 and R1 +R3 7→ R1.

Consequently, the vectors v1, v2, and v3 are linearly independent and v4 = 3v1 + 0v2 + 3v3.

Example 1.6.15. We will demonstrate that the real vectors v1 = [1, 2, 3, 4], v2 = [5, 6, 7, 8], and

v3 = [6, 8, 10, 12] are not linearly independent.

Other benefits of the Linear Independence Algorithm include its indispensable utility in deter-

mining linearly independent spanning sets for subspaces of real n-space.

Definition 1.6.16. Given any subspace W of real n-space, we will say that a collection of vectors

v1,v2, . . . ,vk forms a basis for W if both of the following two conditions hold.

1.) We have that W = span{v1,v2, . . . ,vk}.

2.) We have that v1,v2, . . . ,vk are linearly independent.

Example 1.6.17. Consider the real vectors v = [1, 1] and w = [−3, 2] of Example 1.6.12. We have

already demonstrated that these vectors are linearly independent, hence in order to conclude that

they form a basis for real 2-space, it suffices to prove that they span real 2-space. We will achieve

this by finding the coordinates α and β of any vector [a, b] with respect to v and w. By definition,

we seek real numbers α and β that form a solution to the following matrix equation.[
1 −3

1 2

] [
α

β

]
=

[
a

b

]
Example 1.6.12 exhibits elementary row operations to convert the matrix on the left to reduced row

echelon form; to find α and β, we carry out these operations on the following augmented matrix.[
1 −3 a

1 2 b

]
R2−R1 7→R2∼

[
1 −3 a

0 5 b− a

]
1
5
R2 7→R2∼

[
1 −3 a

0 1 1
5
(b− a)

]
R1+3R2 7→R2∼

[
1 0 1

5
(2a+ 3b)

0 1 1
5
(b− a)

]
Consequently, we find that [a, b] = 1

5
(2a+ 3b)[1, 1] + 1

5
(b− a)[−3, 2] for all real numbers a and b.
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Example 1.6.18. Consider the real vectors v1 = [2, 1,−3], v2 = [4, 0, 2], and v3 = [2,−1, 3]. We

wish to determine if these vectors form a basis for the subspace of real 3-space that they span. We

achieve this by carrying out the steps outlined in the Linear Independence Algorithm. 2 4 2

1 0 −1

−3 2 3

 (1.)∼

 1 0 −1

2 4 2

−3 2 3

 (2.)∼

1 0 −1

0 4 4

0 2 0

 (3.)∼

1 0 −1

0 1 0

0 1 1

 (4.)∼

1 0 −1

0 1 0

0 0 1


(1.) We employed the elementary row operation R1 ↔ R2.

(2.) We employed the elementary row operations R2 − 2R1 7→ R2 and R3 + 3R1 7→ R3.

(3.) We employed the elementary row operations R2 ↔ R3,
1
2
R2 7→ R2, and

1
4
R3 7→ R3.

(4.) We employed the elementary row operation R3 −R2 7→ R3.

Considering that each column of the row echelon form of the above matrix admits a pivot, it follows

that the vectors v1, v2, and v3 are linearly independent, hence they form a basis for the subspace

they span. Even more, we claim that this subspace is indeed the totality of real 3-space. Carrying

out one final elementary row operation puts the matrix in reduced row echelon form.1 0 −1

0 1 0

0 0 1

 (5.)∼

1 0 0

0 1 0

0 0 1


(5.) We employed the elementary row operation R1 +R3 7→ R1.

Consequently, the matrix A whose columns are the vectors v1, v2, and v3 is invertible. Explicitly,

if we perform these elementary row operations on the 3× 3 identity matrix, we will obtain A−1.1 0 0

0 1 0

0 0 1

 (1.)∼

0 1 0

1 0 0

0 0 1

 (2.)∼

0 1 0

1 −2 0

0 3 1

 (3.)∼

0 1 0

0 3
2

1
2

1
4

−1
2

0

 (4.)∼

0 1 0

0 3
2

1
2

1
4

−2 −1
2

 (5.)∼

1
4

−1 −1
2

0 3
2

1
2

1
4

−2 −1
2


Given any vector x in real 3-space, it follows that x = Ix = (AA−1)x = A(A−1x). Considering that

A(A−1x) is a linear combination of the columns of A, we conclude that x lies in the span of v1, v2,

and v3; therefore, since v1, v2, and v3 are linearly independent, every vector in real 3-space can be

written as a unique linear combination of these vectors, so they form a basis for real 3-space.x1

x2

x3

 =

(
1

4
x1 − x2 −

1

2
x3

) 2

1

−3

+

(
3

2
x2 +

1

2
x3

)40
2

+

(
1

4
x1 − 2x2 −

1

2
x3

) 2

−1

3


Both of the previous examples are indicative of a general phenomenon that neatly relates many

of the concepts that we have studied in this chapter. We conclude this section with a discussion of

the connections between homogeneous systems of linear equations and matrix equations.

Theorem 1.6.19 (Fundamental Theorem of Linear Systems of Equations). Consider any consistent

m×n system of linear equations with coefficient matrix A, indeterminate matrix x, and target matrix

b. If n > m, the system admits infinitely many solutions; otherwise, the following are equivalent.
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1.) We can obtain a unique solution for the matrix equation Ax = b.

2.) We can row reduce A to the n× n identity matrix followed by m− n rows of zero.

3.) We can obtain a basis for the column space of A via the columns of A.

Theorem 1.6.20 (Fundamental Theorem of Consistent Linear Systems of Equations). Consider

any consistent m× n system of linear equations with coefficient matrix A, indeterminate matrix x,

and target matrix b. Given any solution ξ of the matrix equation Ax = b and any solution η of

the homogeneous matrix equation Ax = 0, we have that ξ + η is a solution of the matrix equation

Ax = b. Even more, every solution of the matrix equation Ax = b is of the form ξ + η.

Proof. Certainly, if Aξ = b and Aη = 0, then by the Distributive Law, we have that

A(ξ + η) = Aξ + Aη = b+ 0 = b.

Conversely, suppose that x satisfies that Ax = b. We seek vectors ξ and η such that Aξ = b and

Aη = 0 and x = ξ + η. By assumption that Ax = b is consistent, there exists a vector ξ other

than x such that Aξ = b and A(x− ξ) = Ax−Aξ = b−b = 0. We conclude that x− ξ lies in the

null space of A, hence there exists a vector η such that Aη = 0 and x− ξ = η, as desired.

1.7 Linear Independence and Dimension

We have as yet discussed many of the concepts that we seek to employ in this section. Considering

their paramount importance, we recall several of these facts below in preparation for what follows.

We will assume to this end that v1,v2, . . . ,vk are vectors in real n-space.

a.) We say that the vectors v1,v2, . . . ,vk satisfy a dependence relation if there exist scalars

α1, α2, . . . , αk not all of which are zero such that α1v1 + α2v2 + · · · + αkvk = 0. Given that

this is the case, the vectors v1,v2, . . . ,vk are said to be linearly dependent; otherwise,

these vectors are called linearly independent. Consequently, any collection of vectors that

contains the zero vector 0 is linearly dependent: indeed, we may obtain a dependence relation

by taking the coefficients of all nonzero vectors as 0 and the coefficient of 0 as nonzero.

b.) We say that v1,v2, . . . ,vk form a basis for a subspace W of real n-space provided that

1.) we have that W = span{v1,v2, . . . ,vk} and

2.) the vectors v1,v2, . . . ,vk are linearly independent.

Consequently, a basis for a subspace is a linearly independent system of generators.

c.) Given any subspace W of real n-space that is spanned by v1,v2, . . . ,vk, one may carry out the

Linear Independence Algorithm in order to determine a basis for W. Crucially, it is precisely

the pivots of the row echelon form of the matrix whose columns are the vectors v1,v2, . . . ,vk

that correspond to the linearly independent vectors among v1,v2, . . . ,vk.
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Our first objective in this section is to demonstrate that if the vectors v1,v2, . . . ,vk form a basis

for a subspace W of real n-space, then the non-negative integer k is unique. We refer to this number

as the dimension of W, and we write in this case that dim(W ) = k. Essentially, this fact follows as

a corollary of the following proposition that states that if some nonzero vectors v1,v2, . . . ,vk span

W, then any collection of linearly independent vectors consists of no more than k vectors.

Proposition 1.7.1. Given any nonzero vectors v1, . . . ,vk in real n-space, consider the subspace

W = span{v1, . . . ,vk}. Every collection of ℓ > k vectors w1, . . . ,wℓ in W is linearly dependent.

Proof. Considering that W = span{v1, . . . ,vk}, for every collection of nonzero vectors w1, . . . ,wℓ

in W, there exist scalars α11, . . . , α1k, . . . , αℓ1, . . . , αℓk such that the following equations hold.

w1 = α11v1 + · · ·+ α1kvk

...

wℓ = αℓ1v1 + · · ·+ αℓkvk

Consider the ℓ × k matrix A whose (i, j)th component is αij. We note that A is a nonzero matrix

because at least one of the scalars αij is nonzero. By hypothesis that ℓ > k, the reduced row echelon

form for A will have (at least) one zero row at the bottom (because it is impossible for a pivot to

exist in row ℓ). Consequently, there exist scalars β1, . . . , βℓ such that β1w1 + · · ·+ βℓwℓ = 0.

Corollary 1.7.2. Given any pair of bases {v1, . . . ,vk} and {w1, . . . ,wℓ} of any subspace W of real

n-space, we must have that k = ℓ. Consequently, the dimension dim(W ) of W is well-defined.

Proof. By Proposition 1.7.1, we must have that ℓ ≤ k because W is spanned by v1, . . . ,vk and

w1, . . . ,wℓ are linearly independent. Conversely, we must have that k ≤ ℓ because W is spanned

by w1, . . . ,wℓ and v1, . . . ,vk are linearly independent. We conclude that k = ℓ, as desired.

Definition 1.7.3. Given any subspace W of real n-space, the unique number of elements in a basis

for W is the dimension of W ; this number is a non-negative integer denoted by dim(W ).

Example 1.7.4. Consider the zero subspace {0} consisting only of the zero vector 0. observe that

there are no linearly independent vectors in this subspace, hence its dimension is zero. Even more,

this is the only dimension zero subspace of real n-space: for any subspace W that contains a nonzero

vector contains a linearly independent vector, so there must be at least one vector in a basis for W.

Example 1.7.5. Considering that the totality of real n-space Rn is spanned by the linearly indepen-

dent vectors e1, e2, . . . , en by the exposition following Example 1.6.11, we find that dim(Rn) = n.

Crucially, we note that the dimension of real n-space as a vector space is equal to the intuitive

dimension of real n-space. Explicitly, we exist in real 3-space, and we perceive real 4-space through

the passage of time. We can move in three directions (east-west, north-south, up-down), so it makes

sense that the dimension of any space in which there are n directions we can move must be n.

Example 1.7.6. By the Linear Independence Algorithm, we can obtain a basis from any collection

of vectors that span a subspace of real n-space by reducing to a collection of linearly independent

vectors. Explicitly, consider the subspace W of real 4-space spanned by the following vectors.

v1 = [1, 2, 3, 4] v3 = [3, 2, 1, 0]

v2 = [2, 2, 2, 2] v4 = [4, 3, 2, 1]
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(1.) We employed elementary row operations R2−2R1 7→ R2, R3−3R1 7→ R3, and R4−4R1 7→ R1.

(2.) We employed elementary row operations R3 − 2R2 7→ R3 and R4 − 3R2 7→ R4.

We proceed to row reduce the real 4× 4 matrix whose jth column is the vector vj.
1 2 3 4

2 2 2 3

3 2 1 2

4 2 0 1

 (1.)∼


1 2 3 4

0 −2 −4 −5

0 −4 −8 −10

0 −6 −12 −15

 (2.)∼


1 2 3 4

0 −2 −4 −5

0 0 0 0

0 0 0 0


Considering that the first two columns of the row echelon form of the above matrix contain pivots,

we conclude that v1 and v2 are linearly independent vectors that span W. Consequently, it follows

that W = span{[1, 2, 3, 4], [2, 2, 2, 2]}, dim(W ) = 2, and {[1, 2, 3, 4], [2, 2, 2, 2]} is a basis for W.

Algorithm 1.7.7 (Basis Algorithm). Given any real vectors v1,v2, . . . ,vk of real n-space that span

a subspace W = span{v1,v2, . . . ,vk}, carry out the following algorithm to determine a basis for W.

1.) Construct the real n× k matrix A whose jth column is vj.

2.) Use the method of Gaussian Elimination to obtain the row echelon form of A.

3.) Each column that contains a pivot corresponds to a basis vector in the following sense: if each

of the columns i1, i2, . . . , iℓ contains a pivot, then it follows that W = span{vi1 ,vi2 , . . . ,viℓ},
dim(W ) = ℓ, and {vi1 ,vi2 , . . . ,viℓ} constitutes a basis for W.

Caution: one must use the columns of the original matrix A; neither the rows of the matrix A nor

the columns of the row echelon form of A is guaranteed to correspond to a basis for W.

Consequently, the Basis Algorithm yields a systematic method to reduce any spanning set of

a subspace W of real n-space to a basis for W. Conversely, it is always possible to extend any

collection of linearly independent vectors in real n-space to a basis for real n-space as follows.

Proposition 1.7.8. Consider any linearly independent vectors v1, . . . ,vk lying in a subspace W

of real n-space with the property that v1, . . . ,vk,w are linearly dependent for all vectors w in W.

We must have that {v1, . . . ,vk} constitutes a basis for W. Put another way, the largest number of

linearly independent vectors in a subspace W of real n-space is the dimension dim(W ) of W.

Proof. By definition of a basis, it suffices to demonstrate that v1, . . . ,vk span W. Given any vector

w in W, there exist scalars α1, . . . , αn, α not all of which are zero with α1v1+ · · ·+αnvk+αw = 0 by

hypothesis that v1, . . . ,vk,w are linearly dependent. On the other hand, the linear independence

of v1, . . . ,vk implies that if α = 0, then α1 = · · · = αk = 0. Consequently, we must have that α is

nonzero so that w = α1α
−1v1 + · · ·+ αnα

−1vk. We conclude that W = span{v1, . . . ,vk}.

Corollary 1.7.9. Given any linearly independent vectors v1, . . . ,vk lying in a subspace W of real n-

space such that dim(W ) is finite, there exist nonzero vectors vk+1, . . . ,vℓ in W such that {v1, . . . ,vℓ}
constitutes a basis for W. Put another way, every linearly independent collection of vectors lying in

a nonzero subspace W of real n-space can be extended (or enlarged) to a basis for W.
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Proof. Begin with a collection of linearly independent vectors v1, . . . ,vk. By Proposition 1.7.8, if

v1, . . . ,vk,w are linearly dependent for all vectors w in W, then {v1, . . . ,vk} constitutes a basis for

W ; otherwise, there exists a nonzero vector vk+1 in W such that v1, . . . ,vk+1 are linearly indepen-

dent. Continuing in this manner yields nonzero vectors vk+1, . . . ,vℓ in W such that v1, . . . ,vℓ are

linearly independent and v1, . . . ,vℓ,w are linearly dependent for all vectors w in W by Proposition

1.7.1. Consequently, Proposition 1.7.8 assures that v1, . . . ,vℓ form a basis for W, as desired.

We prove at last that every subspace of real n-space has finite dimension, hence every subspace

of real n-space admits a basis. Bearing this in mind, it follows immediately that every subspace

of real n-space can be realized as the span of finitely many vectors in real n-space. Geometrically,

therefore, the following theorem ensures that every nonzero subspace of real n-space is a hyperplane.

Theorem 1.7.10. Every subspace of real n-space has finite dimension. Explicitly, if W is a subspace

of real n-space, then we must have that 0 ≤ dim(W ) ≤ n. Consequently, every subspace of real n-

space can be realized as the span of finitely many linearly independent vectors in real n-space.

Proof. By Proposition 1.7.8, we have that dim(W ) = 0 if and only if W contains no linearly inde-

pendent vectors if and only if W contains no nonzero vectors if and only if W = {0}. Consequently,
it suffices to establish that 1 ≤ dim(W ) ≤ n for every nonzero subspace W of real n-space. Begin

with a nonzero vector v1 in W. By Proposition 1.7.8, if v1 and w are linearly dependent for every

vector w in W, then v1 forms a basis for W ; otherwise, there exists a nonzero vector v2 in W such

that v1 and v2 are linearly independent. Continuing in this manner yields nonzero vectors v1, . . . ,vk

in W such that v1, . . . ,vk are linearly independent and v1, . . . ,vk,w are linearly dependent for all

vectors w in W. Explicitly, by viewing the vectors v1, . . . ,vk,w as vectors in real n-space, we may

appeal to Proposition 1.7.1 because Rn has dimension n. Consequently, we conclude by Proposition

1.7.8 that the linearly independent vectors v1, . . . ,vk form a basis for W and dim(W ) = k. Even

more, we must have that k ≤ n by Proposition 1.7.1. Last, if dim(W ) = n, then a basis for W must

be a basis for Rn. Explicitly, if there were a basis {v1, . . . ,vn} of W that were not a basis for Rn,

then there would exist a vector v in Rn that were not a linear combination of v1, . . . ,vn, i.e., the

vectors v1, . . . ,vn,v would be linearly independent. But this contradicts Proposition 1.7.8.

Considering that the preceding four statements are so important, we collect them below.

Theorem 1.7.11 (Fundamental Theorem of Subspaces of Real n-Space). Consider any subspace

W of real n-space. Each of the following statements regarding W holds.

1.) We may realize W as the span of some linearly independent vectors, i.e., W admits a basis.

2.) We have that 0 ≤ dim(W ) ≤ n. Even more, we have that dim(W ) = 0 if and only if W = {0}
and dim(W ) = n if and only if W = Rn.

3.) Every collection of vectors that span W can be refined to a basis for W.

4.) Every collection of linearly independent vectors of W can be enlarged to a basis for W.

5.) Every collection of dim(W ) vectors that span W constitutes a basis for V.

6.) Every collection of dim(W ) linearly independent vectors of W constitutes a basis for W.
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Example 1.7.12. Considering that dim(R5), every collection of fewer than five vectors in R5 can be

enlarged to basis for R5 by the Fundamental Theorem of Subspaces of Real n-Space. We illustrate

this fact as follows. Consider the following three vectors in real 5-space.

v1 = [1, 2, 3, 4, 5] v2 = [9, 8, 7, 6, 5] v3 = [1, 0, 1, 0, 1]

We will construct a basis for R5 that includes the above three vectors. We begin by fortifying the

collections of vectors with the standard basis vectors e1, e2, . . . , e5. By the Basis Algorithm, we will

next construct the real 5 × 8 matrix whose columns are the vectors v1,v2,v3, e1, e2, . . . , e5; the

pivots of the row echelon form of this matrix correspond to the vectors in a basis for R5.
1 9 1 1 0 0 0 0

2 8 0 0 1 0 0 0

3 7 1 0 0 1 0 0

4 6 0 0 0 0 1 0

5 5 1 0 0 0 0 1


(1.)∼


1 9 1 1 0 0 0 0

0 −10 −2 −2 1 0 0 0

0 −20 −2 −3 0 1 0 0

0 −30 −4 −4 0 0 1 0

0 −40 −4 −5 0 0 0 1



(2.)∼


1 9 1 1 0 0 0 0

0 −10 −2 −2 1 0 0 0

0 0 2 1 −2 1 0 0

0 0 2 2 −3 0 1 0

0 0 4 3 −4 0 0 1



(3.)∼


1 9 1 1 0 0 0 0

0 −10 −2 −2 1 0 0 0

0 0 2 1 −2 1 0 0

0 0 0 1 −1 −1 1 0

0 0 0 1 0 −2 0 1



(4.)∼


1 9 1 1 0 0 0 0

0 −10 −2 −2 1 0 0 0

0 0 2 1 −2 1 0 0

0 0 0 1 −1 −1 1 0

0 0 0 0 1 −1 −1 1


1.) We employed the elementary row operations Ri − iR1 7→ Ri for each integer 2 ≤ i ≤ 5.

2.) We employed the elementary row operations Ri − iR2 7→ Ri for each integer 3 ≤ i ≤ 5.

3.) We employed the elementary row operations R4 −R3 7→ R4 and R5 − 2R3 7→ R5.

4.) We employed the elementary row operation R5 −R4 7→ R5.

Considering that the first five columns of the row echelon form of the above matrix contain pivots,

we conclude that {[1, 2, 3, 4, 5], [9, 8, 7, 6, 5], [1, 0, 1, 0, 1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]} is a basis for R5.
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1.8 Rank of a Matrix

Consider any m × n matrix A. Each column of A can be viewed as a m × 1 column vector, hence

it is natural to investigate the span of the column vectors that comprise A. Explicitly, suppose

that c1, . . . , cn are the m× 1 column vectors such that cj corresponds to the jth column of A. By

definition, the span of these column vectors is the collection of all possible linear combinations of the

vectors c1, . . . , cn, i.e., we have that span{c1, . . . , cn} = {α1c1+ · · ·+αncn | α1, . . . , αn are scalars}.
We refer to the vector space span{c1, . . . , cn} as the column space of A; its dimension is commonly

known as the column rank of A. Crucially, we note that the column space of A is nothing but the

collection of all m×1 vectors of the form Aα, where α is any n×1 vector of the form [α1, . . . , αn]
T .

Explicitly, we have that Aα = α1c1 + · · ·+ αncn, as illustrated in Remark 1.3.20.

Example 1.8.1. Considering that the columns of the real 3 × 3 identity matrix I are simply the

real 3 × 1 vectors e1, e2, and e3 with e1 = [1, 0, 0], e2 = [0, 1, 0], and e3 written as row vectors, it

follows that the column space of the 3× 3 identity matrix I consists of all real vectors of the form

α1e1 + α2e2 + α3e3 = [α1, α2, α3] such that α1, α2, and α3 are real numbers. By the exposition

following Example 1.6.11, this forms the totality of real 3-space, hence the column space of the 3×3

identity matrix is R3. Considering that dim(R3) = 3 by Example 1.7.5, the column rank of I is 3.

One can readily extend this argument to see that the column rank of the n×n identity matrix is n.

Example 1.8.2. Consider the following real 2× 2 matrix.

A =

[
1 0

1 0

]
By definition, the column space of A consists of all possible linear combinations of the columns of

A, hence every vector in the column space of A is of the form

v = α1

[
1

1

]
+ α2

[
0

0

]
= α1

[
1

1

]
for some real number α1. Consequently, the column space of A is simply the span of the nonzero

vector [1, 1]T , hence the column rank of A is one. Observe that the reduced row echelon form

RREF(A) =

[
1 0

0 0

]
of A has column space spanned by the nonzero vector [1, 0]T , hence its column rank is also one.

Example 1.8.3. Consider the real 3× 4 matrix of Example 1.6.14 in reduced row echelon form.

A =

1 −1 −1 0

1 1 −1 0

1 1 1 6

 RREF(A) =

1 0 0 3

0 1 0 0

0 0 1 3


Previously, we illustrated that the column vectors [1, 1, 1]T , [−1, 1, 1]T , and [−1,−1, 1]T are linearly

independent. Considering that R3 has dimension three by Example 1.7.5, we conclude by Theorem

1.7.11(6.) that these vectors form a basis for R3, hence they form a basis for the column space of

A. Consequently, the column rank of A is three. Likewise, the column rank of RREF(A) is three

by the same rationale because the vectors [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T are linearly independent.
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Each of the previous three examples exhibit matrices whose column rank coincides with the

column rank of its reduced row echelon form. We prove next that this is no coincidence: in fact,

the column rank of a matrix is always equal to the column rank of its reduced row echelon form.

Proposition 1.8.4. Every matrix has column rank equal to the column rank of its unique reduced

row echelon form. Put another way, elementary row operations do not affect column rank.

Proof. Consider an m× n matrix A with unique reduced row echelon form R. Let A1, . . . ,An and

R1, . . . ,Rn denote the columns of A and R, respectively. By definition of the reduced row echelon

form of A, there exists an invertible m×m matrix E such that R = EA. Consequently, it follows by

matrix multiplication that Rj = EAj for each integer 1 ≤ j ≤ n. Observe that if there exist scalars

c1, . . . , cn such that c1R1 + · · · + cnRn = 0, then multiplying both sides of this vector equation on

the left by E yields that c1A1+ · · ·+cnAn = 0. Conversely, if there exist scalars d1, . . . , dn such that

d1A1+ · · ·+dnAn = 0, then multiplying both sides of this vector equation on the left by E−1 yields

that d1R1 + · · ·+ dnRn = 0. We conclude therefore that the columns Ai1 , . . . ,Aik of A are linearly

independent if and only if the columns Ri1 , . . . ,Rik are linearly independent. By Proposition 1.7.8

and the definition of column rank, we conclude that the column ranks of A and R are equal.

We may also consider the rows r1, . . . , rm of an m × n matrix A, i.e., the 1 × n row vectors ri
corresponding to the ith row of A. We define the row rank of A to be the dimension of the row

space of A, i.e., the vector space span{r1, . . . , rm} = {α1r1 + · · ·+ αmrm | α1, . . . , αm are scalars}.
Example 1.8.5. Like before, the rows of the real 3×3 identity matrix I are the linearly independent

real 3×1 vectors e1 = [1, 0, 0], e2 = [0, 1, 0], and e3 = [0, 0, 1]; these vectors span the totality of real

3-space R3, so the row space of I is R3 and the row rank of the 3×3 identity matrix is dim(R3) = 3.

Once again, the same argument shows that the row rank of the n× n identity matrix is n.

Example 1.8.6. Consider the following real 2× 2 matrix of Example 1.8.2.

A =

[
1 0

1 0

]
By definition, the row space of A consists of all possible linear combinations of the rows of A, hence

every vector in the row space of A is of the form

v = α1[1, 0] + α2[1, 0] = (α1 + α2)[1, 0]

for some real numbers α1 and α2. Considering that every real number can be written as the sum of

two real numbers (take one of them as zero), it follows that the row space of A is the span of the

nonzero vector [1, 0], hence the row rank of A is one. Observe that the reduced row echelon form

RREF(A) =

[
1 0

0 0

]
of A has the same row space. Consequently, we find that A and RREF(A) have the same row rank.

Example 1.8.7. Consider the real 3×4 matrix of Example 1.8.3 and its reduced row echelon form.

A =

1 −1 −1 0

1 1 −1 0

1 1 1 6

 RREF(A) =

1 0 0 3

0 1 0 0

0 0 1 3


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Consider the row vectors r1 = [1,−1,−1, 0], r2 = [1, 1,−1, 0], and r3 = [1, 1, 1, 6]. Certainly, the

vector r3 is linearly independent from the vectors r1 and r2 because it has a nonzero entry in its

fourth column, and the fourth column of r1 and r2 is zero. Likewise, the vectors r1 and r2 are

linearly independent: indeed, if we take any scalars α1 and α2 such that α1r1 + α2r2 = 0, then it

follows that (α1,−α1,−α1, 0) + (α2, α2,−α2, 0) = (0, 0, 0, 0) so that α1 +α2 = 0 and −α1 +α2 = 0.

By adding the first equation to the second, we find that 2α2 = 0 or α2 = 0, from which it follows

that α1 = 0. Ultimately, we conclude that the row rank of A is three, and the row space of A is

span{r1, r2, r3} = {[α1 + α2 + α3,−α1 + α2 + α3,−α1 − α2 + α3, 6α3] | α1, α2, α3 ∈ R}.

Likewise, the row rank of RREF(A) is three because the vectors r1 = [1, 0, 0, 3], r2 = [0, 1, 0, 0], and

r3[0, 0, 1, 3] are linearly independent: indeed, we have that α1r1 + α2r2 + α3r3 = 0 if and only if

(α1, α2, α3, 3α1 + 3α3) = (0, 0, 0, 0) if and only α1 = α2 = α3 = 0. Last, the row space of RREF(A)

consists of all vectors of the form [α1, α2, α3, 3α1 + 3α3] for some real numbers α1, α2, and α3.

Like before, the previous examples are illustrative of a more general observation that the row

space of any matrix is equal to the row space of its unique reduced row echelon form.

Proposition 1.8.8. Every matrix has row space equal to the row space of its unique reduced row

echelon form. Consequently, the row rank of a matrix is equal to the row rank of its reduced row

echelon form. Put another way, elementary row operations do not affect row space or row rank.

Proof. Consider an m× n matrix A with unique reduced row echelon form R. Let A1, . . . ,Am and

R1, . . . ,Rm denote the rows of A and R, respectively. Certainly, it does not affect the row space

of A to interchange any number of rows of A because this amounts to relabelling the indices of

some row vectors Ai and Aj, and the indices of the vectors in a span do not matter by definition.

Likewise, taking any nonzero scalar multiple c of any row Ai of A does not affect the span of

A1, . . . ,Am because any vector c1A1 + · · · + cmAm in the span of A1, . . . ,Am is now given by

c1A1 + · · · + (cic
−1)cAi + · · · + cmAm. Last, replacing any row Aj of A by the linear combination

cAi+Aj for any scalar c and any integer 1 ≤ i ≤ m does not affect the span of A1, . . . ,Am because

any vector c1A1 + · · ·+ cmAm in the span of A1, . . . ,Am can be realized as the linear combination

c1A1 + · · ·+ (ci − cjc)Ai + · · ·+ cj(cAi +Aj) + · · ·+ cmAm.

Consequently, every vector in the span of A1, . . . ,Am lies in the span of R1, . . . ,Rm. Conversely, ev-

ery row of R is a linear combination of some rows of A, hence every vector in the span of R1, . . . ,Rm

lies in the span of A1, . . . ,Am. We conclude that span{A1, . . . ,Am} = span{R1, . . . ,Rm}, i.e., the
row spaces of A and R are equal; thus, the row rank of A and the row rank of R are equal.

Corollary 1.8.9. Elementary column operations do not affect column rank.

Proposition 1.8.10. Elementary column operations do not affect row rank.

Proof. By definition of the matrix transpose, elementary column operations on a matrix are equiv-

alent to elementary row operations on the matrix transpose; thus, according to Proposition 1.8.4,

elementary row operations on the matrix transpose do not affect the column rank of the matrix

transpose, so elementary column operations do not affect the row rank of the matrix.



1.8. RANK OF A MATRIX 55

Proposition 1.8.11. Every matrix can be reduced via a sequence of elementary row and column

operations to a matrix containing the r × r identity matrix in the top left-hand corner and whose

other rows and columns are all zero, where the non-negative integer r is equal to the row rank of

the matrix. Even more, the row rank and the column rank of any matrix are equal.

Proof. Consider an m× n matrix A with unique reduced row echelon form R. Observe that if A is

the zero matrix, then its row rank and column rank are both zero, and the proposition is vacuously

true. Consequently, we may assume that R is nonzero. By definition of the reduced row echelon

form of a matrix, the nonzero rows of R are linearly independent; they span the row space of R,

hence the number of nonzero rows of R is the row rank of R. By Proposition 1.8.8, the row rank

of R is equal to the row rank of A, hence there are precisely r nonzero rows of R, where r is the

row rank of A. Each of the r nonzero rows of R possesses a pivot of 1 in some column, and all

other entries of any column containing a pivot are zero. By successively interchanging the columns

of R, we obtain a matrix with the r × r identity matrix in the top left-hand corner and zeros in

all subsequent rows. By construction of R, there exists a sequence of elementary row operations

that reduce A to R, so in conjunction with the aforementioned column interchanges, we obtain a

sequence of elementary row and column operations that reduces A to a matrix containing the r× r

identity matrix in the top-left hand corner and whose subsequent rows are all zero. Considering

that adding a scalar multiple of one column to another column is an elementary column operation,

we can reduce any nonzero columns strictly to the right of column r to zero. Explicitly, if a is

the (i, j)th component of the matrix and 1 ≤ i ≤ r and r + 1 ≤ j ≤ n, then Cj − cCi 7→ Cj

yields a 0 in the (i, j)th component of the resulting matrix. Each of these is an elementary column

operation, so after a sequence of elementary column operations, we obtain the desired matrix of the

proposition statement. Last, neither elementary row operations nor elementary column operations

affect column rank by Propositions 1.8.4 and 1.8.9, hence the column rank of A is equal to the

column rank of this matrix, which equals the row rank of the matrix, i.e., the row rank of A.

Consequently, by Proposition 1.8.11, the row rank and column rank of any matrix coincide;

their common value is referred to simply as the rank of A. Even more, the previous proposition is

constructive in the sense that it gives a simple recipe to find the rank of a matrix.

Corollary 1.8.12. The rank of a matrix is equal to the number of pivots of its row echelon form.

Corollary 1.8.13. An n× n matrix A is invertible if and only if rank(A) = n.

Example 1.8.14. Consider the following real 2× 2 matrix.

A =

[
1 −1

−1 1

]
By Corollary 1.8.12, in order to find the rank of A, it suffices to find the row echelon form for A.

We accomplish this by performing elementary row operations on A as follows.[
1 −1

−1 1

]
R2+R1 7→R2∼

[
1 −1

0 0

]
We have obtained a pivot in the first row of the matrix. Consequently, the rank of A is one. We

note that if the matrix A had a pivot in each of its two rows, then it would be row equivalent to

the 2× 2 identity matrix, hence A would be invertible by the Invertibility Criterion.
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Example 1.8.15. Consider the following real 3× 3 matrix.

A =

1 −1 2

2 0 1

1 −1 2


By Corollary 1.8.12, in order to find the rank of A, it suffices to find the row echelon form for A.

We accomplish this by performing elementary row operations on A as follows.1 −1 2

2 0 1

1 −1 2

 R3−R1 7→R3
R2−2R1 7→R2∼

1 −1 2

0 2 −1

0 0 0


We have obtained pivots in rows one and two. Consequently, it follows that the rank of A is two.

Before we conclude this section, we provide the following algorithm for determining bases for the

row space, column space, and null space of a matrix; then, we provide several examples to illustrate

the technique. Example 1.6.4 provides the definition of the null space of a real m×n matrix as the

collection of vectors v in real n-space such that the matrix product Av = 0. Consequently, we may

view the null space of a matrix as all solutions of the homogeneous matrix equation Ax = 0.

Algorithm 1.8.16 (Constructing Bases for the Row Space, Column Space, and Null Space). Con-

sider any real m× n matrix A that is row equivalent to a matrix R in row echelon form.

1.) By definition, the row space of A is the subspace of Rn spanned by the rows of A. By Propo-

sition 1.8.8, elementary row operations do not affect the row space of A. Even more, the proof

of this fact illustrates that the nonzero rows of R form a basis for the row space of A.

2.) Likewise, the column space of A is the subspace of Rm spanned by the columns of A. Proposi-

tion 1.8.4 shows that elementary row operations do not affect the column space; the columns of

R with pivots yield a basis for the column space of A by the Linear Independence Algorithm.

3.) Last, the null space of A is the subspace of Rn formed by the vectors v satisfying that Av = 0.

Elementary row operations correspond to left multiplication by elementary row matrices; these

matrices are invertible by Proposition 1.5.6, so the vector v lies in the null space of A if and

only if v lies in the null space of R. Consequently, the null space of A is the same as the null

space of R, so a basis for the null space of A is provided by a basis for the null space of R.

One advantage of this is that the null space of R is easily determined via back substitution.

Even more, the rank of the matrix A is equal to the number of pivots of R by Corollary 1.8.12.

Example 1.8.17. Consider the following real 2× 4 matrix A.

A =

[
1 2 3 4

5 6 7 8

]
By Algorithm 1.8.16, to determine the row space, column space, null space, and rank of A, we

convert A to row echelon form. We require only the elementary row operation R2 − 5R1 7→ R2.[
1 2 3 4

5 6 7 8

]
∼

[
1 2 3 4

0 −4 −8 −12

]
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Consequently, there are pivots in the first and second columns of A, so the following are immediate.

row(A) = span{[1, 2, 3, 4], [0,−4,−8,−12]}

col(A) = span

{[
1

5

]
,

[
2

6

]}
Even more, we have that rank(A) = 2 because there are two pivots in the row echelon form of A.

We obtain a basis for the null space of A by performing further elementary row operations to obtain

the reduced row echelon form of A. We achieve this in the following two steps.[
1 2 3 4

0 −4 −8 −12

]
(1.)∼

[
1 2 3 4

0 1 2 3

]
(2.)∼

[
1 0 −1 −2

0 1 2 3

]
1.) We performed the elementary row operation −1

4
R2 7→ R2.

2.) We performed the elementary row operation R1 − 2R2 7→ R1.

Consequently, the null space of A consists of vectors v = [v1, v2, v3, v4]
T with v1 − v3 − v4 = 0 and

v2 + 2v3 + 3v4 = 0. Explicitly, we have that v1 = v3 + 2v4 and v2 = −2v3 − 3v4, hence we find that

v =


v1
v2
v3
v4

 =


v3 + 2v4

−2v3 − 3v4
v3
v4

 =


v3

−2v3
v3
0

+


2v4

−3v4
0

v4

 = v3


1

−2

1

0

+ v4


2

−3

0

1

.
We conclude that the null space is spanned by the two column vectors above so that

null(A) = span




1

−2

1

0

,


2

−3

0

1


.

Example 1.8.18. Consider the following real 3× 2 matrix A.

A =

1 1

1 0

2 1


Converting to the row echelon form of A, we obtain bases for the row space and column space. Even

more, if we wish to determine the null space of A, we will find the reduced row echelon form of A.1 1

1 0

2 1

 (1.)∼

1 1

0 −1

0 −1

 (2.)∼

1 0

0 1

0 0


1.) We performed the elementary row operations R2 −R1 7→ R2 and R3 − 2R1 7→ R3.
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2.) We performed the row operations −R3 7→ R3, R2 +R3 7→ R2, R1 −R3 7→ R1, and R2 ↔ R3.

Consequently, the rank of A is two, and the content of Proposition 1.8.11 is illustrated. We conclude

that row(A) = R2 because the nonzero rows of RREF(A) are precisely the standard basis vectors

of R2. We use the columns of A corresponding to the columns of the row echelon form of A with

pivots as a basis for the column space of A according to the Linear Independence Algorithm.

col(A) = span


11
2

,
10
1


Last, the null space of A consists of vectors v = [v1, v2]

T with v1 = 0 and v2 = 0 because the reduced

row echelon form of A has pivots in the first two rows followed by a row of zeros. Consequently,

the null space of A is the zero subspace of R2, i.e., we conclude that null(A) = {[0, 0]}.

Crucially, the previous examples suggest that the dimension of the null space of a real m × n

matrix A is simply the number of free variables in the system of linear equations induced by the

matrix equation Ax = 0. Call the dimension of null(A) the nullity of A and denote it by nullity(A).

By Proposition 1.8.11, this is the number of pivot-free columns of the row echelon form of A. Even

more, the number of zero rows of RREF(A) and the rank of A sum to the number of columns of A.

Theorem 1.8.19 (Rank Equation). Given any real m× n matrix A with row echelon form R,

1.) the nullity of A is the number of free variables in the system of linear equations Ax = 0, i.e.,

nullity(A) is the number of pivot-free columns in the row echelon form R of A;

2.) the rank of A is the number of pivots in the row echelon form R of A; and

3.) the rank and nullity of A sum to the number of columns of A, i.e., rank(A) + nullity(A) = n.

1.9 Real n-Space, Revisited

Earlier in this chapter, we explored the geometry of real n-space using the language of vectors and

the vector dot product. Explicitly, we established the following properties of vectors in real n-space.

a.) Each vector x = [x1, x2, . . . , xn] in real n-space admits a non-negative length (or magnitude)

∥x∥ =
√

x2
1 + x2

2 + · · ·+ x2
n.

Even more, the magnitude is non-degenerate in the sense that ∥x∥ = 0 if and only if x = 0,

and for any real number α, we have that ∥αx∥ = |α|∥x∥ (Proposition 1.2.2).

b.) Every pair of vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] in real n-space induce a real

number called the dot product of x and y and defined by

x · y = x1y1 + x2y2 + · · ·+ xnyn.
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Crucially, the dot product is commutative, distributive across vector addition, homogeneous,

non-degenerate in the sense that x ·x = 0 if and only if x = 0, and satisfies the Law of Cosines

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ)

for the angle θ between x and y (Proposition 1.2.8). Consequently, the dot product satisfies

x · y = ∥x∥∥y∥ cos(θ).

c.) Generalizing the notion of perpendicular vectors in the plane, we say that a pair of vectors

x and y in real n-space are orthogonal if x · y = 0. Equivalently, we note that x and y are

orthogonal if and only if the angle θ between x and y is 90◦ (Proposition 1.2.9).

d.) Given any nonzero, non-parallel vectors x and y lying in standard position in real n-space,

the parallelogram spanned by x and y can be pictured as follows.

x

y

h
θ

Observe that the angle θ of intersection between x and y satisfies that h = ∥x∥ sin(θ). Because
the area of a parallelogram is the product of its base and its height, it is h∥y∥ = ∥x∥∥y∥ sin(θ).
Consequently, the area of the parallelogram spanned by x and y is ∥x∥∥y∥ sin(θ).

Consider the second and fourth points above. Given that x and y are nonzero, non-parallel vec-

tors lying in standard position in real n-space, they span a parallelogram of area a = ∥x∥∥y∥ sin(θ)
for the angle θ between x and y. Considering that sin2(θ) + cos2(θ) = 1, the following hold.

a2 = ∥x∥2∥y∥2 sin2(θ)

a2 = ∥x∥2∥y∥2[1− cos2(θ)]

a2 = ∥x∥2∥y∥2 − ∥x∥2∥y∥2 cos2(θ)
a2 = ∥x∥2∥y∥2 − (x · y)2

Restricting our attention to vectors in the plane, we may assume that x = [x1, x2] and y = [y1, y2].

By definition, we have that ∥x∥2 = x2
1 + x2

2, ∥y∥2 = y21 + y22, and x · y = x1y1 + x2y2 so that

a2 = ∥x∥2∥y∥2 − (x · y)2

= (x2
1y

2
1 + x2

1y
2
2 + x2

2y
2
1 + x2

2y
2
2)− (x2

1y
2
1 + 2x1x2y1y2 + x2

2y
2
2)

= x2
1y

2
2 − 2x1x2y1y2 + x2y

2
1

= (x1y2 − x2y1)
2.

Consequently, the area of the parallelogram spanned by x and y in the plane is a = |x1y2−x2y1|. We

refer to the real number x1y2−x2y1 as the determinant of the vectors x = [x1, x2] and y = [y1, y2].

Considering these vectors as the rows of a 2×2 matrix, we define the determinant of a 2×2 matrix

det

([
x1 x2

y1 y2

])
=

∣∣∣∣x1 x2

y1 y2

∣∣∣∣ = x1y2 − x2y1

as the difference of the product of the diagonal and antidiagonal entries of the matrix.
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Example 1.9.1. Consider the following real 2× 2 matrix.

A =

[
1 2

3 4

]
We have that det(A) = (1)(4)− (2)(3) = −2, so the determinant of A is −2.

Example 1.9.2. Consider the following real 2× 2 matrix.

A =

[
1 2

3 6

]
We have that det(A) = (1)(6) − (2)(3) = 0. Crucially, we note that the vectors [1, 2] and [3, 6] in

real 2-space are parallel because [3, 6] = 2[1, 2], hence they do not span a parallelogram.

Example 1.9.3. Consider the parallelogram in real 2-space with vertices (0, 0), (2, 1), (5, 1), and

(3, 0). Graphing the parallelogram in the plane, we find that it is spanned by the vectors x = [2, 1]

and y = [3, 0]. Consequently, the area of the parallelogram is the absolute value of the determinant∣∣∣∣2 1

3 0

∣∣∣∣ = (2)(0)− (1)(3) = −3.

We conclude that the area of the parallelogram is 3 units2. Crucially, we note that this is exactly∣∣∣∣3 0

2 1

∣∣∣∣ = (3)(1)− (0)(2) = 3,

hence swapping the rows of the matrix simply changed the sign of the determinant.

Given any vectors x = [x1, x2, x3] and y = [y1, y2, y3] in real 3-space, the cross product

x× y =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2)e1 − (x1y3 − x3y1)e2 + (x1y2 − x2y1)e3

of the vectors x and y is defined as the symbolic determinant of the standard basis vectors e1, e2,

and e3 with the vectors x and y expressed as the second and third rows of a matrix, respectively.

Crucially, observe that x× y is in fact a vector in real 3-space satisfying the following properties.

Proposition 1.9.4 (Properties of the Cross Product). Consider any vectors x, y, z in real 3-space.

1.) We have that x× y = −(y × x).

2.) We have that x× (αx) = 0 for all real numbers α.

3.) We have that x× (αy) = α(x× y) for all real numbers α.

4.) We have that (x+ y)× z = (x× z) + (y × z) and x× (y + z) = (x× z) + (y × z).

5.) We have that (x× y) · z = (z× x) · y = (y × z) · x.

6.) We have that (x× y) · x = 0 and (x× y) · y = 0.
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Proof. Each of the first three properties follows immediately from Theorem 1.10.13 because the cross

product is defined by a 3× 3 determinant. Likewise, the fourth property follows from Proposition

1.10.7 because the cross product (x+y)×z is determined by the matrix whose second row is the sum

of the second row of the matrices that determine x× z and y× z. Consequently, it suffices to prove

the fifth, sixth, and seventh properties of the cross product. We will assume that x = [x1, x2, x3],

y = [y1, y2, y3], and z = [z1, z2, z3]. Computing the cross products yields the following.

x× y =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2)e1 − (x1y3 − x3y1)e2 + (x1y2 − x2y1)e3

y × z =

∣∣∣∣∣∣
e1 e2 e3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ = (y2z3 − y3z2)e1 − (y1z3 − y3z1)e2 + (y1z2 − y2z1)e3

By subsequently taking the dot products, we obtain the following identities.

(x× y) · z = (x2y3 − x3y2)z1 − (x1y3 − x3y1)z2 + (x1y2 − x2y1)z3

= x1y2z3 − x1y3z2 + x2y3z1 − x2y1z3 + x3y1z2 − x3y2z1

= (y2z3 − y3z2)x1 − (y1z3 − y3z1)x2 + (y1z2 − y2z1)x3 = (y × z) · x

Changing the names of the vectors establishes that each of these quantities is equal to (z×x) ·y, so
we omit the details. Consequently, the fifth property of the cross product is established. Combining

the first and fifth properties above, we conclude that (x× y) · x = (y× x) · x = −(x× y) · x, hence
we must have that (x× y) · x = 0. Likewise, it follows that (x× y) · y = 0, as desired.

Consequently, by the sixth part of Properties of the Cross Product, the cross product yields a

tried-and-true method to construct nonzero vectors orthogonal to a given pair of vectors x and y.

Example 1.9.5. Constructing a nonzero vector that is orthogonal to the vectors x = [−1, 3, 4] and

y = [−2,−1, 3] in real 3-space amount to determining the cross product x× y.

x× y =

∣∣∣∣∣∣
e1 e2 e3

−1 3 4

−2 −1 3

∣∣∣∣∣∣ = [(3)(3)− (4)(−1)]e1 − [(−1)(3)− (4)(−2)]e2 + [(−1)(−1)− (3)(−2)]e3

Computing each of the coefficients yields that x×y = [13,−5, 7]. We can rest assured by the theory

that x× y is in fact orthogonal to x and y, but we may compute the dot products for verification.

(x× y) · x = [13,−5, 7]× [−1, 3, 4] = (13)(−1) + (−5)(3) + (7)(4) = −13− 15 + 28 = 0

(x× y) · y = [13,−5, 7]× [−2,−1, 3] = (13)(−2) + (−5)(−1) + (7)(3) = −26 + 5 + 21 = 0
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Example 1.9.6. Consider the plane determined by the non-collinear points (1, 2, 3), (2, 5, 0), and

(−1, 0, 3) in real 3-space. Considering the point (1, 2, 3) as a local origin, we obtain vectors

x = [2, 5, 0]− [1, 2, 3] = [1, 3,−3] and

y = [−1, 0, 3]− [1, 2, 3] = [−2,−2, 0]

that span the plane: indeed, these vectors are linearly independent (the third coordinate of y is

zero), and they lie in the plane by construction, hence they form a basis for the plane that contains

them. Consequently, to determine a vector orthogonal to the plane, it suffices by the third and

fourth parts of Properties of the Cross Product to determine the cross product of x and y.

x× y =

∣∣∣∣∣∣
e1 e2 e3
1 3 −3

−2 −2 0

∣∣∣∣∣∣ = −6e1 + 6e2 + 4e3 = [−6, 6, 4]

Considering the point (1, 2, 3) as a local origin, every point in the plane spanned by x and y is of

the form (x− 1, y − 2, z − 3), hence x× y is orthogonal to the vectors [x− 1, y − 2, z − 3].

−6(x− 1) + 6(y − 2) + 4(z − 3) = [−6, 6, 4] · [x− 1, y − 2, z − 3] = (x× y) · [x− 1, y − 2, z − 3] = 0

One can simplify the left-hand side to obtain the equation of the plane −3x+ 3y + 2z = 9.

Geometrically, the magnitude of the cross product of a pair of vectors has a nice interpretation.

Proposition 1.9.7. Given any nonzero, non-parallel vectors x and y lying in standard position in

real 3-space, the area of the parallelogram spanned by x and y is ∥x× y∥.

Proof. By the exposition preceding the list provided at the beginning of the section, the square of

the area a of the parallelogram spanned by x and y satisfies that

a2 = ∥x∥2∥y∥2 − (x · y)2.

Consider the vectors x = [x1, x2, x3] and y = [y1, y2, y3] according to their coordinates. By definition

of the magnitude and the dot product, we have that ∥x∥2 = x2
1 + x2

2 + x2
3, ∥y∥2 = y21 + y22 + y23,

x ·y = x1y1+x2y2+x3y3, and ∥x×y∥2 = (x2y3−x3y2)
2+(x1y3−x3y1)

2+(x1y2−x2y1)
2. Expanding

and simplifying the identity for a2 in terms of the coordinates of x and y completes the proof.

1.10 Determinants of n× n Matrices

Back in Section 1.9, we defined the determinant of a real 2× 2 matrix as the real number

det

([
a11 a12
a21 a22

])
= a11a22 − a12a21.

Explicitly, the determinant of a real 2 × 2 matrix is the difference of the product a11a22 of its

diagonal entries and the product a12a21 of its antidiagonal entries. Generally, the determinant of

an n × n matrix can be defined recursively for any positive integer n. Beyond special cases, we
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will not typically concern ourselves with determinants of matrices with more than three rows and

columns, so it suffices to define the determinant of a real 3× 3 matrix. Out of desire for notational

convenience, we will seldom use the det(−) notation for a matrix whose components we wish to

display explicitly; rather, we will denote the determinant using vertical bars as follows.∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

Under this identification, the determinant of a 3× 3 matrix can be defined as follows.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a21
a31 a32

∣∣∣∣
Explicitly, we take the product of the (1, 1)th component a11 of the matrix with the determinant of

the 2× 2 submatrix obtained by deleting row one and column one; then, we subtract from that the

product of the (1, 2)th component a12 of the matrix with the determinant of the 2 × 2 submatrix

obtained by deleting row one and column two; and last, we add to that the product of the (1, 3)th

component of the matrix with the determinant of the 2× 2 submatrix obtained by deleting row one

and column three. Using the determinant of a 2× 2 matrix, we obtain the following formula.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

One naturally wonders the purpose of defining the determinant of a 3 × 3 matrix by expanding

along the first row, i.e., using the first row of the matrix as the coefficients of the determinants of

the attendant 2×2 submatrices instead of using the second row or even some column of the matrix.

Out of curiosity and for illustrative purposes, let us compute the determinant using the second row

of the matrix. Essentially, we must rearrange the above displayed equation to obtain an alternating

sum of a21(a12a33−a13a32), a22(a11a33−a13a31), and a23(a11a32−a12a31); the differences are obtained

as the determinants of the 2× 2 submatrices obtained by deleting the second row and jth column

for each integer 1 ≤ j ≤ 3. By finding each of these terms in the above displayed equation and

determining the appropriate signs, we obtain the following description of the determinant.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −a21(a12a33 − a13a32) + a22(a11a33 − a13a31)− a23(a11a32 − a12a31)

Generally, according to this idea, we may define the determinant of an n× n matrix as follows.

Definition 1.10.1. Given any n × n matrix A, let Aij denote the (n − 1) × (n − 1) submatrix of

A obtained by deleting the ith row and jth column of A. We define the determinant of A by

det(A) =
n∑

j=1

(−1)i+jaij det(Aij).
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Example 1.10.2. By the recursive definition of the determinant, we obtain the following.∣∣∣∣∣∣
1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣ = 1(5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7) = −3− 2(−6) + 3(−3) = 0

Example 1.10.3. By the recursive definition of the determinant, we obtain the following.∣∣∣∣∣∣
1 1 0

1 0 1

0 1 1

∣∣∣∣∣∣ = 1(0 · 1− 1 · 1)− 1(1 · 1− 1 · 0) + 0(1 · 1− 0 · 0) = −1− 1 + 0 = −2

Earlier in this chapter, we discussed the importance of the three elementary row operations for

matrices. Explicitly, the method of Gaussian Elimination can be used to convert a real m×n matrix

to its unique reduced row echelon form, from which many important properties of a matrix (e.g.,

rank and invertibility) can be deduced. Consequently, it is natural to consider the behavior of the

determinant of a matrix with respect to the elementary row operations. We achieve this as follows.

Proposition 1.10.4. Given any n × n matrix A and any scalar α, consider the n × n matrix B

obtained from A by multiplying any row of A by α. We have that det(B) = α det(A).

Proof. We will assume that B is obtained from A by multiplying the ith row of A by α. Consider

the (n− 1)× (n− 1) matrix Aij obtained from A by deleting the ith row and jth column of A. By

hypothesis, we have that bij = αaij and Bij = Aij for each integer 1 ≤ j ≤ n. By Definition 1.10.1,

we conclude that det(B) =
∑n

j=1(−1)i+jbij det(Bij) = α
(∑n

j=1(−1)i+jaij det(Aij)
)
= α det(A).

Corollary 1.10.5. Given any n× n matrix A with a zero row, we have that det(A) = 0.

Proof. We will assume that the ith row of A is zero. Considering that A is obtained from some n×n

matrix B by multiplying the ith row of B by zero, we conclude that det(A) = 0 det(B) = 0.

Corollary 1.10.6. Given any n×n matrix A and any scalar α, we have that det(αA) = αn det(A).

Proof. By definition, the n× n matrix αA is obtained from the matrix A by scaling each of the n

rows of A by α. Consequently, we have that det(αA) = αn det(A) by repeatedly factoring α.

Proposition 1.10.7. Given any n×n matrices A and B that are equal except in one row, consider

the n × n matrix C obtained from A and B by adding the two rows of A and B that are distinct

and including all of the rows of A and B that are equal. We have that det(C) = det(A) + det(B).

Proof. We will assume that the ith row of A is distinct from the ith row of B for some integer

1 ≤ i ≤ n. By definition, the n× n matrix C satisfies that cjk = ajk = bjk for all integers 1 ≤ j ≤ n

with j ̸= i and cik = aik + bik for all integers 1 ≤ k ≤ n. Consequently, the (n− 1)× (n− 1) matrix

Cik obtained from C by deleting the ith row and the kth column of C satisfies that Cik = Aik = Bik
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so that det(Cik) = det(Aik) = det(Bik) for all integers 1 ≤ i ≤ k. We conclude the result as follows.

det(C) =
n∑

k=1

(−1)i+kcik det(Cik) =
n∑

k=1

(−1)i+k(aik + bik) det(Cik)

=
n∑

k=1

(−1)i+kaik det(Cik) +
n∑

k=1

(−1)i+kbik det(Cik)

=
n∑

k=1

(−1)i+kaik det(Aik) +
n∑

k=1

(−1)i+kbik det(Bik)

= det(A) + det(B)

Proposition 1.10.8. Given any n× n matrix A with two equal rows, we have that det(A) = 0.

Proof. We will proceed by induction on the integer n ≥ 2. Certainly, if there are only two rows of

A, then they must be equal to one another, hence the result holds in the case that n = 2 as follows.∣∣∣∣a11 a12
a11 a12

∣∣∣∣ = a11a12 − a12a11 = 0

Consequently, we may assume inductively that the result holds for some integer n ≥ 3. We may

assume that the ith row of A and the jth row of A are equal for some integers 1 ≤ i < j ≤ n.

Consider the n×nmatrix Akℓ obtained from A by deleting the kth row and ℓth column of A for some

integer 1 ≤ k ≤ n that is distinct from both i and j. We may find such an integer k by assumption

that n ≥ 3. Crucially, we note that the ith row of Akℓ and the jth row of Akℓ are equal for all

integers 1 ≤ ℓ ≤ n, hence by induction, it follows that det(Akℓ) = 0 for all integers 1 ≤ ℓ ≤ n. By

Definition 1.10.1, we conclude the desired result that det(A) =
∑n

ℓ=1(−1)k+ℓakℓ det(Akℓ) = 0.

Proposition 1.10.9. Given any n × n matrix A, any scalar α, and any integers 1 ≤ i < j ≤ n,

consider the n×n matrix B obtained from A by replacing the jth row of A with the sum of α times

the ith row and the jth row of A. We have that det(B) = det(A). Put another way, if we add any

scalar multiple of a row of an n× n matrix to any other row, the determinant does not change.

Proof. By definition of B, we have that bkℓ = akℓ for all integers 1 ≤ k ≤ n such that k ̸= j

and bjℓ = αaiℓ + ajℓ for all integers 1 ≤ ℓ ≤ n. Consider the n × n matrix C obtained from

A by replacing the jth row of A with α times the ith row of A. Crucially, observe that B is

obtained from A and C by including all common rows of A and C and taking the sum of the

jth rows of A and C as the jth row of B. Consequently, by Proposition 1.10.7, we have that

det(B) = det(A) + det(C). Consider the n × n matrix D obtained from A by replacing the jth

row of A with the ith row of A. Explicitly, we note that C is obtained from D by multiplying

the jth row of D by α. By Proposition 1.10.4, we have that det(C) = α det(D). Considering that

the ith and jth rows of D are equal, it follows from Proposition 1.10.8 that det(D) = 0 so that

det(B) = det(A) + det(C) = det(A) + α det(D) = det(A).
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Corollary 1.10.10. Given any n × n matrix A, if some row of A can be written as a linear

combination of some other rows of A, then we have that det(A) = 0.

Proof. We will denote by Ai the ith row of A. Consider the case that Ai = α1Ai1 + · · ·+ αkAik for

some integers 1 ≤ i1 < · · · < ik ≤ n and some scalars α1, . . . , αk. By rearranging the terms of the

above identity, we find that −α1Ai1 − · · · − αkAik + Ai = O. Consequently, we may subtract αj

times the ijth row of A from the ith row of A for each integer 1 ≤ j ≤ k to reduce the ith row of

A to zero. By Proposition 1.10.9, this process does not change the determinant of A; on the other

hand, the determinant of the resulting matrix is zero by Corollary 1.10.5 so that det(A) = 0.

Proposition 1.10.11. Given any n×n matrix A, consider the n×n matrix B obtained from A by

interchanging any pair of rows of A. We have that det(B) = −det(A). Put another way, swapping

any pair of rows of an n× n matrix alters the sign of the determinant.

Proof. Certainly, if any pair of rows of A are equal, then we have that det(B) = 0 = −0 = −det(A).

Consequently, we may assume that all rows of A are distinct. Crucially, we may obtain B from A

by a sequence of operations that alter the determinant in exactly the manner claimed. Begin with

the matrix C that is obtained from A by replacing the ith row of A with the sum of the ith and jth

rows of A. By Propositions 1.10.7 and 1.10.8, it follows that det(C) = det(A). Consider next the

matrix D that is obtained from C by subtracting the ith row of C from the jth row of C so that

the jth row of D is the ith row of A with the opposite sign. By Proposition 1.10.9, it follows that

det(D) = det(C) = det(A). Last, we notice that B can be obtained from D by multiplying the jth

row of D by −1; then, Proposition 1.10.4 yields that det(B) = −det(D) = −det(A).

By the previous laundry list of properties of the determinant, we have fully described the behav-

ior of the determinant with respect to the elementary row operations on matrices. We demonstrate

next these properties also hold for the columns, and we summarize in the following corollary.

Proposition 1.10.12. Given any n× n matrix A, we have that det(AT ) = det(A).

Proof. Unlike usual, we will prove the proposition only in the case that n = 2 or n = 3; the proof of

the general case is beyond the scope of this class at the moment. Observe that the following hold.∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 = a11a22 − a21a12 =

∣∣∣∣a11 a21
a12 a22

∣∣∣∣
Considering that the left-hand side is an arbitrary 2 × 2 matrix and the right-hand side is the

transpose of this matrix, the result holds for n = 2. Likewise, the following identities hold.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

∣∣∣∣∣∣
a11 a21 a31
a12 a22 a32
a13 a23 a33

∣∣∣∣∣∣ = a11(a22a33 − a23a32)− a21(a12a33 − a13a32) + a31(a12a23 − a13a22)

Once again, the result holds as soon as we recognize that the right-hand sides are equal.
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Theorem 1.10.13 (Properties of the Determinant). Consider any n× n matrix A.

1.) We may compute det(A) by expanding along any row of A.

2.) By multiplying any row of A by α, we multiply det(A) by α.

3.) By adding a scalar multiple of one row of A to another row, we do not change det(A).

4.) By swapping two rows of A, we change the sign of det(A).

5.) We have that det(A) = 0 if any row of A is zero.

6.) We have that det(A) = 0 if any pair of rows of A are equal.

7.) We have that det(A) = 0 if any row of A is a linear combination of other rows of A.

8.) We have that det(A) = α det(RREF(A)) for some scalar α.

Each of the above statements also holds if we use columns instead of rows.

Example 1.10.14. Consider the following real 3× 3 matrix.

A =

1 2 3

2 4 6

3 6 9


Considering that the second row of A is equal to twice the first row of A, it follows by Proposition

1.10.10 that det(A) = 0. One could make a similar argument with the first and third rows of A.

Example 1.10.15. Consider the following real 3× 3 matrix.

A =

1 1 0

1 2 1

2 1 1


By employing the elementary row operations R2 − R1 7→ R2 and R3 − R1 7→ R3, according to

Proposition 1.10.9, we do not alter det(A). Consequently, obtain the following 3× 3 matrix.

B =

1 1 0

0 1 1

1 0 1


By employing the elementary row operation R2 ↔ R3, we obtain the following 3× 3 matrix.

C =

1 1 0

1 0 1

0 1 1


By Example 1.10.3 and Proposition 1.10.11, we conclude the following.

det(A) = − det(C) = −

∣∣∣∣∣∣
1 1 0

1 0 1

0 1 1

∣∣∣∣∣∣ = 2
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Example 1.10.16. Consider the following real 3× 3 matrix.

A =

0 0 1

0 1 0

1 0 0


By employing the elementary column operation C1 ↔ C3, we obtain the 3 × 3 identity matrix.

Consequently, by Theorem 1.10.13, we have that det(A) = − det(I3×3). Last, observe the following.

det(A) = − det(I3×3) = −

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣ = −1

∣∣∣∣1 0

0 1

∣∣∣∣ = −1

1.11 The Adjugate of a Matrix

Every square matrix possesses a numerical invariant called its determinant. We will come to un-

derstand throughout this course that the determinant of a matrix contains a wealth of information

about the properties of the matrix (e.g., Properties of the Determinant). Computing the determi-

nant of a square matrix amounts to recursively expanding the matrix about some row or column

by multiplying each subsequent entry aij of the specified row or column of the matrix by the deter-

minant of the submatrix obtained by deleting the ith row and column jth column of the matrix.

One other way to obtain the determinant of an n×n matrix A is as the coefficient of the scalar

matrix det(A)I. We achieve this by taking the product of A with its adjugate matrix adj(A).

We note that the adjugate matrix can also be encountered under the name of the classical adjoint

(cf. [HK71, Exercise 5.2.3]); however, we will not adopt such terminology here because it is often

associated with another object related to linear transformations. Like with the determinant, the

adjugate matrix is defined recursively beginning with the case of 2× 2 matrices as follows.

A =

[
a b

c d

]
adj(A) =

[
d −b

−c a

]
Explicitly, the adjugate matrix of any 2 × 2 matrix is obtained by swapping the elements on the

main diagonal and changing the signs of the elements on the antidiagonal. Observe the following.

adj(A)A =

[
d −b

−c a

] [
a b

c d

]
=

[
ad− bc 0

0 ad− bc

]
=

[
det(A) 0

0 det(A)

]
= det(A)I

Consequently, if det(A) is nonzero, then A is an invertible 2× 2 matrix with A−1 = 1
det(A)

adj(A).

We will soon verify that this rationale is much more general and applies to square matrices of

all sizes. Before we are able to do this, we must define the adjugate of any n× n matrix.

Definition 1.11.1. Given any n × n matrix A, let Aij denote the (n − 1) × (n − 1) submatrix of

A obtained by deleting the ith row and jth column of A. We refer to the scalar µij = det(Aij) used

in the definition of the determinant of A as the (i, j)th minor of the matrix A.

Definition 1.11.2. Given any n × n matrix A, let µij denote the (i, j)th minor of A, i.e., µij is

the determinant of the (n− 1)× (n− 1) submatrix of A obtained by deleting the ith row and jth

column of A. We refer to the scalar γij = (−1)i+jµij as the (i, j)th cofactor of the matrix A.
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Definition 1.11.3. Given any n×n matrix A, let γij denote the (i, j)th cofactor of A, i.e., suppose

that γij = (−1)i+jµij = (−1)i+j det(Aij), where Aij is the matrix obtained from A by deleting its

ith row and jth column. We refer to the matrix Γ =
[
γij

]
1≤i≤n
1≤j≤n

as the cofactor matrix of A.

Definition 1.11.4. Given any n × n matrix A, let Γ denote the n × n cofactor matrix of A. We

refer to the n× n matrix adj(A) = ΓT as the adjugate (or adjugate matrix) of A.

One thing to notice is that the adjugate matrix can be defined for any square matrix over any

ring because it only involves the operations of multiplication and subtraction; we will see that this

provides a drastic improvement to the method of Gaussian Elimination we used previously to detect

if a matrix is invertible. Explicitly, the process of Gaussian Elimination is only defined for matrices

over fields because division is sometimes necessary to find the reduced row echelon form of a matrix.

Example 1.11.5. Let us compute the adjugate of the following real 3× 3 matrix.

A =

1 1 0

1 0 1

0 1 1


By Example 1.10.3, we have that det(A) = −2. We will verify that adj(A)A = −2I = det(A)I. By

Definition 1.11.4, we note that adj(A) is given by the transpose of the cofactor matrix Γ of A. By

Definition 1.11.3, the (i, j)th component of the cofactor matrix Γ is the (i, j)th cofactor γij of A. By

Definition 1.11.2, the cofactors of A are the signed 2×2 minors µij of A. Ultimately, we must begin

by finding the 2×2 minors µij of A. Considering that A is a 3×3 matrix, there are 9 = 3 ·3 minors.

By Definition 1.11.1, each minor µij is given by the determinant of the 2 × 2 matrix Aij obtained

from A by deleting its ith row and jth column. Consequently, we find the following minors.

µ11 =

∣∣∣∣0 1

1 1

∣∣∣∣ = −1 µ21 =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1 µ31 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1

µ12 =

∣∣∣∣1 1

0 1

∣∣∣∣ = 1 µ22 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1 µ32 =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1

µ13 =

∣∣∣∣1 0

0 1

∣∣∣∣ = 1 µ23 =

∣∣∣∣1 1

0 1

∣∣∣∣ = 1 µ33 =

∣∣∣∣1 1

1 0

∣∣∣∣ = −1

Continuing from this point, we find the 9 = 3 · 3 cofactors γij = (−1)i+jµij.

γ11 = (−1)1+1µ11 = −1 γ21 = (−1)2+1µ21 = −1 γ31 = (−1)3+1µ31 = 1

γ12 = (−1)1+2µ12 = −1 γ22 = (−1)2+2µ22 = 1 γ32 = (−1)3+2µ32 = −1

γ13 = (−1)1+3µ13 = 1 γ23 = (−1)2+3µ23 = −1 γ33 = (−1)3+3µ33 = −1
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We are now in position to form the 3× 3 cofactor matrix Γ as follows.

Γ =

−1 −1 1

−1 1 −1

1 −1 −1


Observe that in this case, Γ is a symmetric matrix because each row of Γ is equal to the corresponding

column of Γ. Consequently, we have that adj(A) = ΓT = Γ. Even more, the following holds.

adj(A)A =

−1 −1 1

−1 1 −1

1 −1 −1

1 1 0

1 0 1

0 1 1

 =

−2 0 0

0 −2 0

0 0 −2

 = −2I = det(A)I

Observe that if we divide both sides by det(A) = −2, then we find the following.

A−1 =
1

det(A)
adj(A) = −1

2

−1 −1 1

−1 1 −1

1 −1 −1

 =

 1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

1
2


Example 1.11.6. Let us compute the adjugate of the following real 3× 3 matrix.

A =

1 2 3

4 5 6

7 8 9


By Definition 1.11.4, we have that adj(A) is equal to the transpose of the cofactor matrix Γ of A. By

Definition 1.11.3, we construct the cofactor matrix Γ by finding each of the cofactors γij of A. By

Definition 1.11.2, the cofactors of A are the signed 2×2 minors µij of A. Ultimately, we must begin

by finding the 2×2 minors µij of A. Considering that A is a 3×3 matrix, there are 9 = 3 ·3 minors.

By Definition 1.11.1, each minor µij is given by the determinant of the 2 × 2 matrix Aij obtained

from A by deleting its ith row and jth column. Consequently, we find the following minors.

µ11 =

∣∣∣∣5 6

8 9

∣∣∣∣ = −3 µ21 =

∣∣∣∣2 3

8 9

∣∣∣∣ = −6 µ31 =

∣∣∣∣2 3

5 6

∣∣∣∣ = −3

µ12 =

∣∣∣∣4 6

7 9

∣∣∣∣ = −6 µ22 =

∣∣∣∣1 3

7 9

∣∣∣∣ = −12 µ32 =

∣∣∣∣1 3

4 6

∣∣∣∣ = −6

µ13 =

∣∣∣∣4 5

7 8

∣∣∣∣ = −3 µ23 =

∣∣∣∣1 2

7 8

∣∣∣∣ = −6 µ33 =

∣∣∣∣1 2

4 5

∣∣∣∣ = −3

Continuing from this point, we find the 9 = 3 · 3 cofactors γij = (−1)i+jµij.

γ11 = (−1)1+1µ11 = −3 γ21 = (−1)2+1µ21 = 6 γ31 = (−1)3+1µ31 = −3

γ12 = (−1)1+2µ12 = 6 γ22 = (−1)2+2µ22 = −12 γ32 = (−1)3+2µ32 = 6

γ13 = (−1)1+3µ13 = −3 γ23 = (−1)2+3µ23 = 6 γ33 = (−1)3+3µ33 = −3
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We are now in position to form the 3× 3 cofactor matrix Γ as follows.

Γ =

−3 6 −3

6 −12 6

−3 6 −3


Observe that in this case, Γ is a symmetric matrix because each row of Γ is equal to the corresponding

column of Γ. Consequently, we have that adj(A) = ΓT = Γ. Even more, the following holds.

adj(A)A =

−3 6 −3

6 −12 6

−3 6 −3

1 2 3

4 5 6

7 8 9

 =

0 0 0

0 0 0

0 0 0

 = O3×3 = 0I3×3 = det(A)I3×3

We will demonstrate next that the observations and patterns that have held across our examples

are indicative of a general relationship between a square matrix and its adjugate.

Proposition 1.11.7. Given any n× n matrix A, we have that adj(A)A = det(A)I.

Proof. By Definition 1.11.4, we have that adj(A) = ΓT , where Γ is the cofactor matrix of A. By

Definition 1.11.3, the (i, j)th component of Γ is the (i, j)th cofactor γij of A. By Definition 1.11.2, it

follows that γij = (−1)i+j det(Aij), where Aij is the (n−1)×(n−1) submatrix of A obtained from A

by deleting the ith row and jth column of A. Consequently, the (i, j)th component of adj(A) is the

(j, i)th component of Γ, i.e., the (j, i)th cofactor γji = (−1)i+j det(Aji) of A. By Definition 1.3.15,

we note that the (i, j)th component of adj(A)A is the sum of the products of the (i, k)th component

of adj(A) and the (k, j)th component of A for each integer 1 ≤ k ≤ n, i.e., the (i, j)th component of

adj(A)A is
∑n

k=1(−1)i+kakj det(Aki). By Definition 1.10.1, we conclude that the (i, i)th components

of adj(A)A are exactly det(A) because these are obtained from the aforementioned sum by setting

i = j. Consequently, it suffices to prove that
∑n

k=1(−1)i+kakj det(Aki) = 0 whenever i ̸= j.

Consider the n × n matrix B obtained from A by replacing the ith column of A with the jth

column of A. Observe that for each integer 1 ≤ k ≤ n, we have that bki = akj because the ith

column of B is equal to the jth column of A. Even more, we have that Bki = Aki for all integers

1 ≤ k ≤ n because A and B only differ in the ith column. By Theorem 1.10.13, we have that

0 = det(B) =
n∑

k=1

(−1)i+kbki det(Bki) =
n∑

k=1

(−1)i+kakj det(Aki).

We conclude therefore that the non-diagonal components of adj(A)A are zero, as desired.

Proposition 1.11.8. Given any n × n matrix A, we have that adj(AT ) = adj(A)T . Put another

way, the adjugate of the transpose is the transpose of the adjugate.

Proof. Crucially, observe that deleting the ith row and jth column of AT is the same as deleting the

ith column and jth row of A and taking its transpose because the ith row of AT is the ith column

of A and the jth column of AT is the jth row of A. Consequently, we have that (AT )ij = (Aji)
T . By

the underlying definitions of the adjugate, the (i, j)th component of adj(AT ) is (−1)i+j det((AT )ij),

hence by our opening remarks, the (i, j)th component of adj(AT ) is exactly (−1)i+j det((Aji)
T ). By

Proposition 1.10.12, it follows that the (i, j)th component of adj(AT ) is (−1)i+j det(Aji). Considering

that this is the (j, i)th component of adj(A) by definition, we conclude that the (i, j)th component of

adj(AT ) is the (i, j)th component of adj(A)T , hence the two matrices in consideration are equal.
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Corollary 1.11.9. Given any n× n matrix A, we have that A adj(A) = det(A)I.

Proof. By Proposition 1.11.7, we have that adj(AT )AT = det(AT )I. By Proposition 1.10.12, we

have that det(AT ) = det(A) so that adj(AT )AT = det(A)I. By Proposition 1.11.8, we have that

adj(AT ) = adj(A)T so that adj(A)TAT = det(A)I. Last, by Proposition 1.3.24, we conclude that

det(A)I = det(A)IT = (det(A)I)T = (adj(A)TAT )T = (AT )T (adj(A)T )T = A adj(A).

Theorem 1.11.10. Given any n×n matrix A, we have that A is invertible if and only if det(A) ̸= 0.

Proof. Certainly, if the determinant of A is nonzero, then Propositions 1.11.7 and 1.11.9 imply that(
1

det(A)
adj(A)

)
A = I = A

(
1

det(A)
adj(A)

)
and A−1 = 1

det(A)
adj(A). Conversely, if det(A) = 0, then adj(A)A = det(A)I = On×n. Consequently,

there is no n× n matrix B such that AB = I = BA, i.e., A is not invertible.

Example 1.11.11. By Example 1.10.2, the following 3× 3 matrix is not invertible.

A =

1 2 3

4 5 6

7 8 9


Example 1.11.12. By Example 1.10.3, the following 3× 3 matrix is invertible.

A =

1 1 0

1 0 1

0 1 1


Example 1.11.13. By Example 1.10.14, the following 3× 3 matrix is not invertible.

A =

1 2 3

2 4 6

3 6 9


We could have also noticed that A is row equivalent to a matrix with a zero row.

Example 1.11.14. By Example 1.10.15, the following 3× 3 matrix is invertible.

A =

1 2 0

1 2 1

2 1 1


Example 1.11.15. By Example 1.10.16, the following 3× 3 matrix is invertible.

A =

0 0 1

0 1 0

1 0 0


We could have also noticed that it is row equivalent to the 3× 3 identity matrix.
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Before we conclude this section, we state a critically important property of determinants.

Theorem 1.11.16. Given any n× n matrices A and B, we have that det(AB) = det(A) det(B).

Proof. Consider the unique reduced row echelon form R = RREF(A) for A. By Theorem 1.10.13,

there exists a scalar α that is uniquely determined by the elementary row operations E1, . . . , Ek

that are used to convert R to A such that det(A) = α det(R) and Ek · · ·E1R = A. Either R has a

row consisting of zeros, or it is the n×n identity matrix. By the aforementioned corollary, if R has a

row consisting of zeros, then det(R) = 0 so that det(A) = α det(R) = 0 and det(A) det(B) = 0. By

Theorem 1.11.10, we have that det(AB) is nonzero if and only if AB is invertible if and only if RB

is invertible. By assumption that R has a row consisting of zeros, it follows that RB is not invertible

because it has a column consisting of zeros, and we conclude that det(AB) = 0. Conversely, if R is

the n×n identity matrix, then det(A) = α det(R) = α and A = Ek · · ·E1R = Ek · · ·E1, from which

we conclude that det(A) det(B) = α det(B) = det(Ek · · ·E1B) = det(Ek · · ·E1RB) = det(AB).

1.12 Chapter Overview

This section is currently under construction.



Chapter 2

Canonical Forms of Matrices

We introduced in the first chapter the notion of vectors in real n-space and their geometry. Even

more importantly, we discussed matrices, their arithmetic, and numerous important properties of

them. Essentially, the theory of matrices vastly simplifies the algebra of large sets of data. We will

soon demonstrate that the collection of all real m× n matrices forms an algebraic structure called

a vector space; vector spaces are ubiquitous throughout mathematics, so it is critical to under-

stand their properties. We will soon define functions (linear transformations) between vector spaces

study certain vector spaces called the kernel and the range associated to a linear transformation.

Ultimately, we will establish that linear transformations and matrices are intimately connected

in a rigorous sense: explicitly, every linear transformation induces a matrix that is uniquely de-

termined by specifying a basis for the domain and codomain spaces of the linear transformation.

Consequently, we are motivated to return to further develop the theory of matrices in this chapter.

2.1 Characteristic and Minimal Polynomials

We introduce in this section two polynomial invariants of an n×nmatrix. Both of these polynomials

are related to the determinant of a matrix associated with the given square matrix. Explicitly,

suppose that A is any n× n matrix. We will adopt the shorthand I for the n× n identity matrix.

Given any indeterminate x, we refer to the matrix xI − A as the characteristic matrix of A.

Both A and I are by assumption n× n matrices, hence the characteristic matrix xI −A is likewise

an n × n matrix. Even more, we note that diagonal of xI − A consists of x − aii for each integer

1 ≤ i ≤ n and the off-diagonal components of xI − A are the off-diagonal components of A with

the opposite sign. Explicitly, we have that xI − A =
[
xδij − aij

]
1≤i≤n
1≤j≤n

for the Kronecker delta δij.

Example 2.1.1. Consider the following 2× 2 matrix A and its characteristic matrix xI − A.

A =

[
1 2

2 1

]
xI − A =

[
x− 1 −2

−2 x− 1

]

We note that det(xI − A) = (x− 1)(x− 1)− (−2)(−2) = x2 − 2x− 3 = (x− 3)(x+ 1).

74
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Example 2.1.2. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

1 1 0

1 0 1

0 1 1

 xI − A =

x− 1 −1 0

−1 x −1

0 −1 x− 1


We note that det(xI−A) = (x−1)[x(x−1)−(−1)(−1)]−(−1)[(−1)(x−1)−(−1)(0)]. By simplifying

this, we obtain that det(xI −A) = (x− 1)(x2 − x− 1)− (x− 1), hence factoring by grouping yields

that det(xI − A) = (x− 1)(x2 − x− 1− 1) = (x− 1)(x2 − x− 2) = (x− 1)(x− 2)(x+ 1).

Considering that we may always expand the determinant of the n×n characteristic matrix xI−A

along the first row, it follows that χA(x) = det(xI −A) must be a polynomial in indeterminate x of

degree n because the product of the diagonal elements of xI−A form a polynomial in indeterminate x

of degree n. (Concretely, one can prove this by induction.) Consequently, we refer to the determinant

det(xI −A) of the characteristic matrix of A as the characteristic polynomial of A. One of the

first observations that we can make regarding the characteristic polynomial is the following.

Proposition 2.1.3. Given any n × n matrix A with characteristic polynomial χ(x), we have that

det(A) = (−1)nχ(0). Put another way, the constant term of χ(x) is (−1)n det(A).

Proof. By definition of the characteristic polynomial, we have that χ(0) = det(0I −A) = det(−A).

Consequently, by Proposition 1.10.6, it follows that χ(0) = (−1)n det(A), hence the result can be

obtained by multiplying both sides of this identity by (−1)n and using the fact that (−1)2n = 1.

Example 2.1.4. Given any 2× 2 matrix A with characteristic polynomial χ(x) = x2 − 2x+ 1, we

must have that det(A) = (−1)2(02 − 2(0) + 1) = 1.

Example 2.1.5. Given any 3× 3 matrix A with characteristic polynomial χ(x) = x3 − ex2 + π, we

must have that det(A) = (−1)3(03 − e(0)2 + π) = −π.

Given any polynomial p(x) = ckx
k + · · ·+ c1x+ c0, we can “plug in” any n× n matrix A to the

polynomial p(x) to obtain a matrix polynomial p(A) = ckA
k + · · · + c1A + c0I. Explicitly, the

matrices Ai for each integer 1 ≤ i ≤ k are given by the i-fold product of the matrix A with itself,

and the constant term c0 of p(x) becomes the scalar matrix c0I in the matrix polynomial p(A).

Example 2.1.6. Consider the 2× 2 matrix A of Example 2.1.1. Observe that the following hold.

A− 3I =

[
1 2

2 1

]
− 3

[
1 0

0 1

]
=

[
1 2

2 1

]
−

[
3 0

0 3

]
=

[
−2 2

2 −2

]

A+ I =

[
1 2

2 1

]
+

[
1 0

0 1

]
=

[
2 2

2 2

]

(A− 3I)(A+ I) =

[
−2 2

2 −2

] [
2 2

2 2

]
=

[
0 0

0 0

]
Consequently, the matrix polynomial χ(A) = (A− 3I)(A+ I) yields the 2× 2 zero matrix.
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Example 2.1.7. Consider the 3× 3 matrix A of Example 2.1.2. Observe that the following hold.

A− I =

1 1 0

1 0 1

0 1 1

−

1 0 0

0 1 0

0 0 1

 =

0 1 0

1 −1 1

0 1 0



A− 2I =

1 1 0

1 0 1

0 1 1

− 2

1 0 0

0 1 0

0 0 1

 =

1 1 0

1 0 1

0 1 1

−

2 0 0

0 2 0

0 0 2

 =

−1 1 0

1 −2 1

0 1 −1



A+ I =

1 1 0

1 0 1

0 1 1

+

1 0 0

0 1 0

0 0 1

 =

2 1 0

1 1 1

0 1 2



(A− I)(A− 2I)(A+ I) =

0 1 0

1 −1 1

0 1 0

−1 1 0

1 −2 1

0 1 −1

2 1 0

1 1 1

0 1 2



=

 1 −2 1

−2 4 −2

1 −2 1

2 1 0

1 1 1

0 1 2

 =

0 0 0

0 0 0

0 0 0


Consequently, the matrix polynomial χ(A) = (A− I)(A− 2I)(A+ I) yields the 3× 3 zero matrix.

Our next theorem demonstrates that these examples are indicative of a general phenomenon.

Theorem 2.1.8 (Cayley-Hamilton Theorem). Given any n× n matrix A with characteristic poly-

nomial χ(x), it holds that χ(A) = O, i.e., the characteristic polynomial of A annihilates A.

Proof. Considering that we have the adjugate matrix at our disposal from our discussion in the

previous section 1.11, we will incorporate it into this proof; however, there are a wealth of excel-

lent proofs of this fact that the interested reader is encouraged to discover. Considering that the

characteristic matrix xI − A of A is an n× n matrix whose coefficients lie in a polynomial ring, it

admits an adjugate matrix adj(xI −A) such that adj(xI −A)(xI −A) = det(xI −A)I = χ(x)I by

Proposition 1.11.7 and the definition of the characteristic polynomial χ(x). On the other hand, the

components of the n×n matrices xI−A, adj(xI−A), and χ(x)I are polynomials in indeterminate

x, hence these matrices can be written uniquely as formal polynomials with matrix coefficients: we

must simply determine the part of the matrices corresponding to each monomial xi for each integer

0 ≤ i ≤ n. Explicitly, the characteristic matrix xI−A is already written as a formal polynomial with

matrix coefficients: indeed, the degree-one “coefficient” is the identity matrix I, and the “constant

term” is the matrix A. Even more, if we write χ(x) = xn+ cn−1x
n−1+ · · ·+ c1x+ c0 for some scalars

cn−1, . . . , c1, c0, then the unique expression of χ(x)I as a formal polynomial with matrix coefficients

is χ(x)I = xnI + cn−1x
n−1I + · · ·+ c1xI + c0I. Consider the unique n×n matrices Bn−1, . . . , B1, B0
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such that adj(xI − A) = xn−1Bn−1 + · · · + xB1 + B0. Expanding the left- and right-hand sides of

the identity adj(xI − A)(xI − A) = χ(x)I according to our formal polynomial factorizations, we

find that (xn−1Bn−1 + · · · + xB1 + B0)(xI − A) = xnI + cn−1x
n−1I + · · · + c1xI + c0I. Expanding

the product on the left-hand side and comparing the terms with xi, we obtain the following.

Bn−1 = I (the coefficient of xn)

Bn−2 −Bn−1A = cn−1I (the coefficient of xn−1)

...

B0 −B1A = c1I (the coefficient of x)

−B0A = c0I (the constant term)

Crucially, we may now multiply each subsequent identity from bottom to top by Ai for the integer

0 ≤ i ≤ n corresponding to the monomial xi to find the following identities.

Bn−1A
n = An (the coefficient of xn)

Bn−2A
n−1 −Bn−1A

n = cn−1A
n−1 (the coefficient of xn−1)

...

B0A−B1A
2 = c1A (the coefficient of x)

−B0A = c0I (the constant term)

Last, adding the left-hand column yields a telescoping sum that results in the zero matrix; however,

the right-hand sums to the n× n matrix An + cn−1A
n−1 + · · ·+ c1A+ c0I = χ(A).

One immediate consequence of the Cayley-Hamilton Theorem is that for every n× n matrix A,

there exists a unique monic polynomial µA(x) of least degree such that µA(A) = O. We refer to

this polynomial as the minimal polynomial of A. Explicitly, a monic polynomial is one whose

leading coefficient is one. By the Cayley-Hamilton Theorem, the characteristic polynomial χA(x) of

A is a monic polynomial satisfying that χA(A) = O, hence there exists a monic polynomial with the

desired property. Consequently, we can find a monic polynomial of least degree that annihilates A

by the Well-Ordering Principle applied to the nonempty set of positive integers corresponding

to the degree of monic polynomials that annihilate A. Even more, the uniqueness of the minimal

polynomial comes from the fact that if we take two monic polynomials of least degree that both

annihilate A, then each of the polynomials will divide the other, hence they must be equal.

Even if this line of argument is not immediately clear, what matters is the following.

Proposition 2.1.9. Given any n×n matrix A, its minimal polynomial µ(x) divides every polynomial

p(x) such that p(A) = O. Consequently, the minimal polynomial of A must divide the characteristic

polynomial of A, so it is either the characteristic polynomial of A or a proper factor of it.

Proof. By the Division Algorithm for polynomials, there exist unique polynomials q(x) and r(x)

such that p(x) = q(x)µ(x) + r(x) and the degree of r(x) is strictly smaller than the degree of µ(x).

By assumption, we have that p(A) = O. By definition of µ(x), we have that µ(A) = O. Combined,

these observations imply that O = p(A) = q(A)µ(A)+ r(A) = q(A)O+ r(A) = r(A). Consequently,
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we have found a polynomial r(x) of lesser degree than µ(x) that annihilates A. Even more, if r(x)

is nonzero, then we may multiply by the multiplicative inverse of its leading coefficient to obtain a

monic polynomial of lesser degree than µ(x) that annihilates A. Because this is impossible by the

definition of µ(x), we conclude that r(x) must be the zero polynomial so that µ(x) divides p(x).

By the Cayley-Hamilton Theorem, the characteristic polynomial of A annihilates A, so it must

be divisible by the minimal polynomial of A by the argument of the preceding paragraph.

Example 2.1.10. Consider the 2× 2 matrix A of Examples 2.1.1 and 2.1.6. We proved previously

that the characteristic polynomial of A is χ(x) = (x− 3)(x+1); neither x− 3 nor x+1 annihilates

A by the previous example, hence we conclude by Proposition 2.1.9 that µ(x) = χ(x).

Example 2.1.11. Consider the 3× 3 matrix A of Examples 2.1.2 and 2.1.7. We proved previously

that the characteristic polynomial of A is χ(x) = (x− 1)(x− 2)(x+1). Observe that none of x− 1,

x−2, or x+1 annihilate A by the previous example. Even more, (x−1)(x−2) and (x−1)(x+1) and

(x−2)(x+1) do not annihilate A. Consequently, we conclude by Proposition 2.1.9 that µ(x) = χ(x).

Example 2.1.12. Consider the 3 × 3 zero matrix O. Observe that the characteristic polynomial

of O is given by χ(x) = det(xI −O) = det(xI) = x3 det(I) = x3; however, the minimal polynomial

of O is simply µ(x) = x. Generally, this is similarly the case for all n× n zero matrices.

Even though the minimal polynomial of a matrix is not necessarily the characteristic polynomial

of the matrix, we know by Proposition 2.1.9 that the minimal polynomial is always a factor of the

characteristic polynomial. Consequently, the roots of the minimal polynomial are always among

the roots of the characteristic polynomial. Explicitly, for any scalar c such that µ(c) = 0, we must

have that χ(c) = 0. We refer to such a scalar c such that χA(c) = 0 as an eigenvalue of A. We

note that the eigenvalues of A are precisely those scalars such that det(cI − A) = 0. Under this

identification, we can drastically narrow down the possibilities for the minimal polynomial µA(x).

Proposition 2.1.13. Given any n×n matrix A, the characteristic polynomial of A and the minimal

polynomial of A have the same roots. Particularly, the minimal polynomial of A is divisible by every

irreducible polynomial factor of the characteristic polynomial of A.

Proof. We will prove that µA(c) = 0 if and only if c is a characteristic value of A. By the Factor

Theorem, if we assume that µA(c) = 0, then µA(x) = (x−c)q(x) for some polynomial q(x) of strictly

lesser degree than µA(x). By definition of µA(x), we must have that q(A) is nonzero. Consequently,

we have that O = µA(A) = (A − cI)q(A), hence cI − A cannot be invertible because its product

with the nonzero matrix −q(A) is the zero matrix. We conclude by Proposition 2.2.5 that c is a

characteristic value of A. Conversely, if c is a characteristic value of A, then cI−A is not invertible,

hence there exists a nonzero n × n matrix B such that (cI − A)B = O or cB = AB. Crucially,

for any integer 1 ≤ k ≤ n, we have that AkB = Ak−1(AB) = Ak−1(cB) = c(Ak−1B) = · · · = ckB

by Propositions 1.3.21 and 1.3.22. Consequently, it follows that O = OB = µA(A)B = µA(c)B.

Considering that µA(c) is a scalar and B is a nonzero matrix, this is only possible if µA(c) = 0.

We summarize the content of Propositions 2.1.9 and 2.1.13 in the following algorithm.

Algorithm 2.1.14 (Computing the Characteristic and Minimal Polynomials). Consider any n×n

matrix A. Carry out the following steps to find the characteristic and minimal polynomials of A.



2.1. CHARACTERISTIC AND MINIMAL POLYNOMIALS 79

1.) Compute the characteristic matrix xI − A.

2.) Compute the characteristic polynomial χA(x) = det(xI − A).

3.) Completely factor the characteristic polynomial, taking care to account for whether entries of

the matrix A are real or complex; this affects the factorization of χA(x).

4.) List all possibilities for the minimal polynomial of A, taking care to account for the fact that

µA(x) must be a factor of χA(x) with all of the same roots as χA(x).

Example 2.1.15. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

−1 0 0

0 1 0

0 0 −1

 xI − A =

x+ 1 0 0

0 x− 1 0

0 0 x+ 1


One can readily verify that χ(x) = (x+1)2(x−1) is the characteristic polynomial of A. Consequently,

by Proposition 2.1.13, we must have that µ(x) = χ(x) or µ(x) = (x+1)(x−1) = x2−1. Considering

that A2 = I, it follows that A2 − I = O so that µ(x) = x2 − 1.

Example 2.1.16. Consider the following 3× 3 matrix A and its characteristic matrix xI − A.

A =

1 1 1

2 2 2

3 3 3

 xI − A =

x− 1 −1 −1

−2 x− 2 −2

−3 −3 x− 3


By definition, the characteristic polynomial of A is found by computing the following.

χ(x) = det(xI − A) = (x− 1)[(x− 2)(x− 3)− 6] + [−2(x− 3)− 6] + [6 + 3(x− 2)]

= (x− 1)(x2 − 5x+ 6− 6)− (2x− 6 + 6) + (6− 3x− 6)

= (x− 1)(x2 − 5x)− 5x

= x3 − 6x2

Considering that χ(x) = x3 − 6x2 = x2(x− 6), it follows that µ(x) = χ(x) or µ(x) = x(x− 6). We

conclude that µ(x) = x(x− 6) because A(A− 6I) = O, as the following calculation shows.

A(A− 6I) =

1 1 1

2 2 2

3 3 3

−5 1 1

2 −4 2

3 3 −3

 =

0 0 0

0 0 0

0 0 0


Explicitly, one need only check that the first row is zero because the second and third rows of

A(A− 6I) are merely a scalar multiple of the first row of A(A− 6I) by definition of A.
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2.2 Eigenvalues and Eigenvectors

Consider any n× n matrix A. Previously, we have established that the determinant of the charac-

teristic matrix xI − A corresponding to A is a monic polynomial χA(x) = det(xI − A) of degree n

called the characteristic polynomial of A; we refer to the roots of χA(x) as the eigenvalues of A.

Example 2.2.1. Consider the 2× 2 matrix A of Example 2.1.1.

A =

[
1 2

2 1

]
We showed that χ(x) = det(xI − A) = (x− 3)(x+ 1), hence the eigenvalues of A are −1 and 3.

Example 2.2.2. Consider the following real diagonal 3× 3 matrix.

A =

a 0 0

0 b 0

0 0 c


Observe that the characteristic matrix xI−A corresponding to A is a diagonal matrix with diagonal

components x−a, x−b, and x−c. One can readily verify that the determinant of a diagonal matrix

is the product of its diagonal entries, hence we have that χ(x) = det(xI−A) = (x−a)(x−b)(x−c).

Consequently, the eigenvalues of A are simply the diagonal entries a, b, and c.

Example 2.2.3. Consider the 3× 3 matrix A of Example 2.1.2.

A =

1 1 0

1 0 1

0 1 1


Considering that χ(x) = det(xI−A) = (x− 1)(x− 2)(x+1), the eigenvalues of A are −1, 1, and 2.

Example 2.2.4. Consider the 3× 3 matrix A of Example 2.1.16.

A =

1 1 1

2 2 2

3 3 3


We demonstrated previously that χ(x) = det(xI − A) = x2(x− 6), hence the eigenvalues of A are

0 (with multiplicity two) and 6. We will soon return to this notion of multiplicity of eigenvalues.

Crucially, the eigenvalues of a square matrix A determine the invertibility of the characteristic

matrix xI − A for each fixed real number x. We outline this as follows.

Proposition 2.2.5. Given any n× n matrix A, the following are equivalent.

1.) We have that χA(c) = 0, i.e., the real number c is an eigenvalue of A.

2.) We have that cI − A is not invertible.

3.) We have that Av = cv for some nonzero vector v in real n-space.
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Proof. By definition of the characteristic polynomial χA(x) of A, it follows that χA(c) = 0 if and

only if det(cI − A) = 0. By Proposition 1.11.10, this occurs if and only if cI − A is not invertible,

hence the first two criteria are equivalent. By the Rank Equation, there exists a nonzero vector v

in real n-space such that Av = cv if and only if cv − Av = 0 if and only if (cI − A)v = 0 if and

only if nullity(cI −A) > 0 if and only if rank(cI −A) < n. Consequently, Proposition 1.8.13 yields

the equivalence of criteria (2.) and (3.): rank(cI−A) < n if and only if cI−A is not invertible.

Bearing in mind the content of Proposition 2.2.5, we say that a nonzero vector v in real n-space

is an eigenvector of an n× n matrix A corresponding to the eigenvalue c if and only if Av = cv.

Example 2.2.6. Consider the 2× 2 matrix A of Example 2.2.1.

A =

[
1 2

2 1

]
We showed that the eigenvalues of A are −1 and 3. We claim that v1 = [−1, 1] is an eigenvector of

A corresponding to the eigenvalue c1 = −1 and v2 = [1, 1] is an eigenvector of A corresponding to

the eigenvalue c2 = 3. We bear this out by showing that Avi = civi for each vector and eigenvalue.

Example 2.2.7. Consider the real diagonal 3× 3 matrix of Example 2.2.2.

A =

a 0 0

0 b 0

0 0 c


We showed that the eigenvalues of A are simply the diagonal entries c1 = a, c2 = b, and c3 = c. We

claim that vi = ei is an eigenvector of A corresponding to the eigenvalue ci.

Ae1 =

a 0 0

0 b 0

0 0 c

10
0

 =

a0
0

 = a

10
0

 = ae1

Ae2 =

a 0 0

0 b 0

0 0 c

01
0

 =

0b
0

 = b

01
0

 = be2

Ae3 =

a 0 0

0 b 0

0 0 c

00
1

 =

00
c

 = c

00
1

 = ce3

Example 2.2.8. Consider the 3× 3 matrix A of Example 2.2.3.

A =

1 1 0

1 0 1

0 1 1


We showed that the eigenvalues of A are −1, 1, and 2. We claim that v1 = [1,−2, 1] is an eigenvector

of A corresponding to the eigenvalue c1 = −1; v2 = [−1, 0, 1] is an eigenvector of A corresponding

to the eigenvalue c2 = 1; and v3 = [1, 1, 1] is an eigenvector of A corresponding to c3 = 2.
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Example 2.2.9. Consider the 3× 3 matrix A of Example 2.2.4.

A =

1 1 1

2 2 2

3 3 3


We showed that the eigenvalues of A are 0 and 6. We claim that v1 = [−1, 1, 0] and v2 = [−1, 0, 1]

are both eigenvectors of A corresponding to the eigenvalue c1 = 0 and v3 = [1, 2, 3] is an eigenvector

of A corresponding to the eigenvalue c2 = 6. Be sure to notice that c1 = 0 has two eigenvectors!

Crucially, eigenvectors corresponding to eigenvalues are unique in the following sense.

Proposition 2.2.10 (Uniqueness of Eigenvalues Corresponding to Eigenvectors). If v is an eigen-

vector of an n× n matrix A corresponding to an eigenvalue α, then α is uniquely determined by its

eigenvector v in the sense that if Av = βv for any scalar β, then we must have that β = α.

Proof. On the contrary, we will assume that α and β are distinct scalars. Consequently, we have that

α− β is a nonzero scalar. By assumption that Av = βv and by hypothesis that v is an eigenvector

of A corresponding to the eigenvalue α, we have that αv = Av = βv so that αv − βv = 0 and

(α−β)v = 0. Considering that α−β is a nonzero scalar, we can multiply both sides of this equation

by (α − β)−1 to obtain that v = 0. But this is impossible: by hypothesis that v is an eigenvector

corresponding to α, we must have that v is a nonzero vector by definition of an eigenvector.

Consequently, if a nonzero vector v of real n-space corresponds to an eigenvalue α, then α is

uniquely determined by v, and there cannot exist another scalar β such that Av = βv. Once we

have found the eigenvalues of a matrix by computing the roots of its characteristic polynomial, the

hunt is on to determine the eigenvectors of A corresponding to these eigenvalues. We remind the

reader that if c is an eigenvalue of an n × n matrix A, then by Proposition 2.2.5, the eigenvectors

of A corresponding to the eigenvalue c of A are simply the vectors v in real n-space satisfying

that Av = cv. Consequently, in practice, the way to find the eigenvectors of an n × n matrix A

corresponding to an eigenvalue c of A is to solve the matrix equation (cI − A)v = 0.

Algorithm 2.2.11 (Constructing the Eigenvalues and Eigenvectors of a Matrix). Consider any

n× n matrix A. Carry out the following steps to find the eigenvalues and eigenvectors of A.

1.) Construct the characteristic matrix xI − A.

2.) Construct the characteristic polynomial χA(x) = det(xI − A).

3.) Compute the roots c1, . . . , cn of the characteristic polynomial χA(x). By definition, these roots

are the eigenvalues of the matrix A. Be sure to note whether A is a real or complex matrix;

this will determine the possible eigenvalues of A as well as the minimal polynomial of A.

4.) Compute the null space of ciI−A for each distinct eigenvalue ci of A. By definition, the basis

vectors of null(ciI − A) are the distinct eigenvectors of A corresponding to the eigenvalue ci.

Considering that null(cI − A) is a subspace of real n-space by Example 1.6.4, we refer to the

dimension of null(cI −A) as the geometric multiplicity of the eigenvalue c of A. Going forward,

we will distinguish the subspace null(cI − A) as the eigenspace of the eigenvalue c.
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Example 2.2.12. Consider the 2× 2 matrix A of Example 2.2.2 with eigenvalues −1 and 3.

A =

[
1 2

2 1

]
By definition, the eigenvectors of A corresponding to the eigenvalue c1 = −1 are the solutions of

the homogeneous equation (−I − A)v = 0, so we may reduce −I − A to row echelon form.

−I − A =

[
−2 −2

−2 −2

]
R2−R1 7→R2∼

[
−2 −2

0 0

]
By viewing the first row of the above matrix as a linear equation −2x1 − 2x2 = 0, it follows that

x2 = −x1 and x1 is a free variable. We conclude that the eigenspace of c1 = −1 satisfies that

null(−I − A) = span

{[
1

−1

]}
.

Likewise, the eigenspace of the eigenvalue c2 = 3 can be determined as follows.

3I − A =

[
2 −2

−2 2

]
R2+R1 7→R2∼

[
2 −2

0 0

]
By viewing the first row of the above matrix as a linear equation 2x1 − 2x2 = 0, it follows that

x2 = x1 and x1 is a free variable. We conclude that the eigenspace of c2 = 3 satisfies that

null(−I − A) = span

{[
1

1

]}
.

Consequently, v1 =
[

1
−1

]
is an eigenvector for c1 = −1 and v2 = [ 11 ] is an eigenvector for c2 = 3.

Example 2.2.13. Consider the 3× 3 matrix A of Example 2.2.3 with eigenvalues −1, 1, and 2.

A =

1 1 0

1 0 1

0 1 1


We reduce the matrices −I−A, I−A, and 2I−A to row echelon form to determine the eigenspaces.

−I − A =

−2 −1 0

−1 −1 −1

0 −1 −2

 R2− 1
2
R1 7→R2∼

−2 −1 0

0 −1
2

−1

0 −1 −2

 R3−2R2 7→R3∼

−2 −1 0

0 −1
2

−1

0 0 0



I − A =

 0 −1 0

−1 1 −1

0 −1 0

 R2+R1 7→R2
R3−R1 7→R3∼

 0 −1 0

−1 0 −1

0 0 0



2I − A =

 1 −1 0

−1 2 −1

0 −1 1

 R2+R1 7→R2∼

1 −1 0

0 1 −1

0 −1 1

 R3+R2 7→R3∼

1 −1 0

0 1 −1

0 0 0


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Each of the above matrices corresponds to a homogeneous system of linear equations that is con-

structed by reading the rows of the matrices. Explicitly, the rows of the matrix corresponding to

−I −A satisfy that −2x1 − x2 = 0 and −1
2
x2 − x3 = 0. Consequently, we find that x1 = −1

2
x2 and

x3 = −1
2
x2 and x2 is a free variable. By judiciously setting x2 = 2, we obtain the eigenspace

null(−I − A) = span


−1

2

−1

 so that v1 =

−1

2

−1

 is an eigenvector corresponding to c1 = −1.

Likewise, the matrix corresponding to I−A induces the equations −x2 = 0 and −x1−x3 = 0, from

which it follows that x2 = 0, x1 = −x3, and x3 is a free variable. We obtain the eigenspace

null(I − A) = span


−1

0

1

 so that v2 =

−1

0

1

 is an eigenvector corresponding to c2 = 1.

Last, the matrix corresponding to 2I − A yields the equations x1 − x2 = 0 and x2 − x3 = 0, hence

x1 = x2, x3 = x2, and x2 is a free variable. By choosing that x2 = 1, we obtain the eigenspace

null(2I − A) = span


11
1

 so that v3 =

11
1

 is an eigenvector corresponding to c3 = 2.

Example 2.2.14. Consider the 3× 3 matrix A of Example 2.2.4 with eigenvalues 0 and 6.

A =

1 1 1

2 2 2

3 3 3


Even though the matrix at hand admits only two distinct eigenvalues (one with multiplicity two),

there are in fact three distinct eigenvectors: indeed, the eigenvalue c1 = 0 induces an eigenspace

null(0I − A) of dimension two as follows, hence the geometric multiplicity of c1 = 0 is two.

0I − A =

−1 −1 −1

−2 −2 −2

−3 −3 −3

 R2−2R1 7→R2
R3−3R1 7→R3
−R1 7→R1∼

1 1 1

0 0 0

0 0 0



6I − A =

 5 −1 −1

−2 4 −2

−3 −3 3

 R3+R1 7→R3
R3+R2 7→R3∼

 5 −1 −1

−2 4 −2

0 0 0

 R2+
2
5
R1 7→R2∼

5 −1 −1

0 18
5

−12
5

0 0 0


Consequently, for the above matrix corresponding to 0I −A, we have that x1 + x2 + x3 = 0 so that

x1 = −x2 − x3 and x2 and x3 are free variables; thus, every vector of null(0I − A) is of the formx1

x2

x3

 =

−x2 − x3

x2

x3

 = x2

−1

1

0

+ x3

−1

0

1

 so that null(0I − A) = span


−1

1

0

,
−1

0

1

.
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On the other hand, the matrix corresponding to 6I −A yields the equations 5x1 − x2 − x3 = 0 and

18x2 − 12x3 = 0 so that x2 =
2
3
x3, x1 =

1
5
x2 +

1
5
x3 =

1
3
x3, and x3 is a free variable. By judiciously

choosing x3 = 3, we obtain the eigenspace of A corresponding to c2 = 6

null(6I − A) = span


12
3

.

Crucially, we note that in this example, the algebraic multiplicity of the eigenvalue c1 = 0 in the

characteristic polynomial of A is two, and the geometric multiplicity of the eigenspace null(0I −A)

corresponding to the eigenvalue 0 is also two. We will soon investigate this phenomenon further.

2.3 Diagonalization

Our ultimate objective throughout this chapter is to study the canonical forms of an n×n matrix

A for some positive integer n. Put simply, a canonical form of a matrix is any representation of the

matrix by a similar matrix that is (in a strict sense) in “simplest form.” By definition, we say that

a pair of n×n matrices A and B are similar provided that there exists an invertible matrix P such

that B = PAP−1. One of the most immediate and delightful canonical forms occurs when there

exists a basis of eigenvectors for the matrix A. Explicitly, if the vectors v1, . . . ,vn form a basis for

real n-space, the best-case scenario is that v1, . . . ,vn are in fact eigenvectors of A corresponding

to distinct eigenvalues c1, . . . , cn, respectively: indeed, in this case, we have that Avi = civi for

each integer 1 ≤ i ≤ n by Proposition 2.2.5. Consider the real matrix P whose ith column is the

eigenvector vi. By Proposition 2.3.2, we have that P is invertible so that

P−1AP = P−1
[
Av1 Av2 · · · Avn

]
= P−1

[
c1v1 c2v2 · · · cnvn

]
=

[
c1P

−1v1 c2P
−1v2 · · · cnP

−1vn

]

=


c1 0 · · · 0

0 c2 · · · 0
...

...
. . .

...

0 0 · · · cn

.
Consequently, A is similar to a diagonal matrix whose diagonal entries are the eigenvalues of A! We

refer to the diagonal matrix P−1AP = diag{c1, c2, . . . , cn} as the diagonalization of A.

Definition 2.3.1. We say that a real n× n matrix A is diagonalizable if there exists an ordered

basis v1, . . . ,vn of real n-space such that Avi = civi for some scalars c1, . . . , cn. Put another way, a

real n×n matrix is diagonalizable if and only if there exists a basis of eigenvectors for A if and only

if A can be represented by a diagonal matrix with respect to some ordered basis of real n-space.
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Our first order of business is to provide a necessary and sufficient condition for the diagonalizabil-

ity of a real n× n matrix. Like we mentioned in the exposition preceding the above definition, one

starting point is that eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proposition 2.3.2 (Eigenvectors Belonging to Distinct Eigenvalues Are Linearly Independent).

Consider any n× n matrix A. If v1, . . . ,vk are any eigenvectors of A corresponding respectively to

the distinct eigenvalues c1, . . . , ck of A, then v1, . . . ,vk are linearly independent.

Proof. We proceed by induction on the number k of eigenvectors present. By definition, if c1 is

an eigenvalue of A corresponding to the eigenvector v1 of A, then v1 is a nonzero vector, hence

v1 is linearly independent. Consider any eigenvectors v1, . . . ,vk of A corresponding respectively to

the pairwise distinct eigenvalues c1, . . . , ck of A. We must show that if a1v1 + · · ·+ akvk = 0, then

a1 = · · · = ak = 0. Observe that if we apply A to the above relation of linear dependence, then

0 = A0 = A(a1v1 + · · ·+ akvk) = a1Av1 + · · ·+ akAvk = a1c1v1 + · · ·+ akckvk (2.3.1)

by assumption that vi is an eigenvector of A corresponding to the eigenvalue ci of A. On the other

hand, if we multiply our original relation of linear dependence by c1, then we find that

0 = c10 = c1(a1v1 + · · ·+ akvk) = a1c1v1 + · · ·+ akc1vk. (2.3.2)

By subtracting Equation (2.3.2) from Equation (2.3.1), we obtain a third equation

0 = a2(c1 − c2)v2 + · · ·+ ak(c1 − ck)vk.

By induction, these k − 1 vectors are linearly independent, hence we conclude that ai(c1 − ci) = 0

for each integer 2 ≤ i ≤ k. Considering that c1 and ci are distinct eigenvalues for each integer

2 ≤ i ≤ k, we must have that c1 − ci is nonzero. Cancelling the factor of c1 − ci from each identity

ai(c1 − ci) = 0 yields that a2 = · · · = ak = 0, so our original relation of linear independence now

states that a1v1 = 0. But this implies that a1 = 0 because v1 is nonzero by hypothesis.

Corollary 2.3.3 (Every Real Matrix with Distinct Eigenvalues Is Diagonalizable). Consider any

real n× n matrix A. Each of the following conditions guarantees that A is diagonalizable.

1.) The matrix A admits n distinct eigenvalues.

2.) The matrix A admits n linearly independent eigenvectors.

3.) The characteristic polynomial χA(x) splits into distinct linear factors.

Proof. By the fourth part of the Fundamental Theorem of Subspaces of Real n-Space, every collec-

tion of n linearly independent vectors of real n-space form a basis for real n-space. By Proposition

2.3.2, eigenvectors corresponding to distinct eigenvalues are linearly independent, hence any col-

lection of n eigenvectors corresponding to n distinct eigenvalues form a basis for real n-space By

Definition 2.3.1, we conclude that A is diagonalizable. Even more, its matrix representation with

respect to any ordered basis of eigenvectors of A corresponding to distinct eigenvalues of A is a

diagonal matrix. Consequently, if A admits n distinct eigenvalues, then A must be diagonalizable

because in this case, each of the n distinct eigenvalues of A corresponds to an eigenvector of A, i.e.,

there are n linearly independent eigenvectors of A. Last, the eigenvalues of A are the roots of the

characteristic polynomial χA(x), and the roots of χA(x) are determined by its linear factors.
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Example 2.3.4. Consider the following 2× 2 matrix A of Example 2.2.1.

A =

[
1 2

2 1

]
We proved in that example that the eigenvalues of A are −1 and 3, hence by Corollary 2.3.3, we

conclude that A is diagonalizable because it admits n = 2 distinct eigenvalues.

Example 2.3.5. Consider the following 3× 3 matrix of Example 2.2.2.

A =

a 0 0

0 b 0

0 0 c


We demonstrated previously that the eigenvalues of A are a, b, and c corresponding to the respective

eigenvectors e1, e2, and e3. Consequently, A is diagonalizable. Of course, we did not need Corollary

2.3.3 to deduce this fact; we could have simply looked at the diagonal matrix A.

Example 2.3.6. Consider the following 3× 3 matrix A of Example 2.2.3.

A =

1 1 0

1 0 1

0 1 1


We demonstrated in the aforementioned example that A admits n = 3 distinct eigenvalues −1, 1,

and 2, hence by Corollary 2.3.3, it follows that A is diagonalizable.

Example 2.3.7. Consider the following 3× 3 matrix A of Example 2.2.4.

A =

1 1 1

2 2 2

3 3 3


Even though A admits only two distinct eigenvalues 0 and 6, it turns out that A is diagonalizable!

By Example 2.2.9, the eigenspace of A corresponding to the eigenvalue 0 has dimension two since

nullity(0I − A) = 2. Consequently, we must have that nullity(6I − A) = 1 because the vectors in

null(0I − A) and null(6I − A) are linearly independent and the dimension of real 3-space is three.

We conclude that the two eigenvectors that span null(0I − A) and the one eigenvector that spans

null(6I − A) comprise a basis for real 3-space, hence A is diagonalizable by Definition 2.3.1.

Example 2.3.7 illustrates that the conditions of Corollary 2.3.3 are sufficient but not necessary

for the diagonalizability of A. Consequently, we seek more restrictive properties of A under which

A is diagonalizable and for which A is not diagonalizable if the properties are not satisfied. Later

in the course, we will discuss the mechanisms behind the following, but we omit the proof here.

Theorem 2.3.8 (Equivalent Conditions for Diagonalizability). Given any real n×n matrix A with

distinct eigenvalues c1, . . . , ck, we have that A is diagonalizable if and only if

1.) χA(x) = (x− c1)
e1 · · · (x− ck)

ek and nullity(ciI − A) = ei for each integer 1 ≤ i ≤ k or

2.) nullity(c1I − A) + · · ·+ nullity(ckI − A) = #(rows of A).
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Compiling the content of Corollary 2.3.3 and Theorem 2.3.8 yields the following.

Theorem 2.3.9 (Criteria for Diagonalizability). Consider any real n × n matrix A with distinct

eigenvalues c1, . . . , ck. Given that any of the following criteria hold, the matrix A is diagonalizable.

1.) We have that k = n, i.e., the matrix A admits n distinct eigenvalues.

2.) We may factor the characteristic polynomial χA(x) into distinct linear factors.

3.) We may factor the characteristic polynomial χA(x) = (x − c1)
e1 · · · (x − ck)

ek into powers of

distinct linear factors in such a manner that the algebraic multiplicity ei of the eigenvalue ci
coincides with its geometric multiplicity nullity(ciI − A) for each integer 1 ≤ i ≤ k.

4.) We have that nullity(c1I − A) + · · ·+ nullity(ckI − A) = #(rows of A) = #(columns of A).

We have only encountered diagonalizable matrices so far in this section; however, it is unfortu-

nately not true that every matrix is diagonalizable, as exhibited in the following example.

Example 2.3.10. Consider the following real 3× 3 matrix.

A =

0 1 0

0 0 0

0 0 0


Even though this matrix looks quite harmless and inconspicuous, it turns out that it is not diago-

nalizable. Explicitly, the eigenvectors of A do not form a basis for real 3-space, as we demonstrate

next. Observe that the characteristic matrix xI − A is the following upper-triangular matrix.

xI − A =

x −1 0

0 x 0

0 0 x


Consequently, the characteristic polynomial of A is χ(x) = x3 so that c = 0 is the only eigenvalue of

A with algebraic multiplicity three. By the Criteria for Diagonalizability, A is diagonalizable if and

only if the geometric multiplicity of c = 0 is three if and only if nullity(0I − A) = 3. But reading

off the rows of the matrix 0I −A yields the linear equation −x2 = 0, hence we find that x2 = 0 and

x1 and x3 are free variables. We conclude that a typical eigenvector of A is of the form

v =

x1

x2

x3

 =

x1

0

x3

 = x1

10
0

+ x3

00
1

 so that null(0I − A) = span


10
0

,
00
1

.

Considering that nullity(0I − A) = 2 < 3, we conclude that A is not diagonalizable.

We will therefore benefit from the development of tools to study matrices that are not diago-

nalizable. One natural question is whether a matrix that is not diagonalizable admits some other

canonical form. Even though the matrix of Example 2.3.10 is not diagonalizable, it happens to be

upper-triangular. Explicitly, an upper-triangular matrix is a square matrix whose entries below

the main diagonal are zero. Conversely, a matrix is lower-triangular if it is the transpose of an
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upper-triangular matrix. Considering that the determinant of a matrix is equal to the determinant

of its transpose and the characteristic polynomial of a matrix is therefore equal to the characteristic

polynomial of its transpose, we may fix our attention on upper-triangular matrices.

One of the foremost features of such matrices is that the determinant of an upper-triangular

matrix is the product of its diagonal entries; this affords a simple way to compute the characteristic

polynomial of an upper-triangular matrix since its characteristic matrix is upper-triangular.

Proposition 2.3.11. The determinant of a triangular matrix is the product of its diagonal entries.

Proof. Considering that a lower-triangular matrix is the transpose of an upper-triangular matrix

and the determinant of a matrix is equal to the determinant of its transpose by Proposition 1.10.12,

we may prove the claim for upper-triangular matrices. We proceed by induction on the size n of an

n× n upper-triangular matrix A. Every 2× 2 diagonal matrix is of the following form.

A =

[
a11 a12
0 a22

]
Consequently, we have that det(A) = a11a22, as desired. We will assume by induction that the

claim holds for (n− 1)× (n− 1) upper-triangular matrices. Consider the following n× n matrix.

A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann


Expanding the determinant along the first column, we obtain the following identity.

det(A) = a11

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2n
0 a33 · · · a3n
...

...
. . .

...

0 0 · · · ann

∣∣∣∣∣∣∣∣∣
Considering that the determinant on the right-hand side is taken from an (n−1)×(n−1) matrix, it

follows by our inductive hypothesis that det(A) = a11a22 · · · ann is the product of the diagonal.

Corollary 2.3.12. Given any triangular n× n matrix A whose diagonal entries are a1, . . . , an, the

characteristic polynomial of A is given by χA(x) = (x− a1) · · · (x− an).

Proof. Considering that xI is a diagonal matrix, it follows that xI−A is a triangular matrix because

the difference does not affect any components of A other than those lying on the diagonal of A.

Observe that the diagonal components of xI−A are simply the linear polynomials x−a1, . . . , x−an,

hence by Proposition 2.3.11, we conclude that χA(x) = det(xI − A) = (x− a1) · · · (x− an).

We will soon return to the explore the ubiquity of upper-triangular matrices. Explicitly, we will

demonstrate that every real n× n matrix admits a matrix representation that is upper-triangular!

Put another way, if A is a real n × n matrix, then there exists an invertible matrix P such that

P−1AP is upper-triangular. Considering the utility of such a matrix representation, we will spend

a considerable amount of time working toward the construction of these matrices. We adopt the

approach in this course of using another canonical form to construct this upper-triangular matrix.
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2.4 Smith Normal Form

We turn our attention next to an indispensable tool in the theory of canonical forms for matrices.

Explicitly, we will construct a canonical form for the characteristic matrix xI − A of a real n × n

matrix that will allow us to determine the minimal polynomial and characteristic polynomial of A.

Theorem 2.4.1 (Smith Normal Form). Given any real n× n matrix A and any indeterminate x,

there exist invertible real n× n matrices P and Q and polynomials p1(x), p2(x), . . . , pℓ(x) such that

P (xI − A)Q =



1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 0 · · · 0

0 0 · · · 0 p1(x) 0 · · · 0

0 0 · · · 0 0 p2(x) · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · pℓ(x)


and the polynomials pi(x) are unique (up to sign) and satisfy that p1(x) | p2(x) | · · · | pℓ(x). Even
more, the non-constant polynomials are called invariant factors; the minimal polynomial of A is

the largest invariant factor pℓ(x); and the characteristic polynomial of A is p1(x)p2(x) · · · pℓ(x).

Computing the Smith Normal Form for the characteristic matrix xI −A of a real n× n matrix

A amounts to carrying out some elementary row operations and elementary column operations on

xI − A to reduce the given matrix to the desired form. Explicitly, we will find that the invertible

n× n matrix P is obtained from the n× n identity matrix by performing the specified elementary

row operations on xI−A; likewise, the invertible n×n matrix Q is obtained from the n×n identity

matrix by performing the specified elementary column operations on xI − A. We note that there

are three elementary row (or column) operations that are valid in this scenario.

Definition 2.4.2 (Elementary Row and Column Operations). Each of the following polynomial

arithmetic operations are permissible to perform on the characteristic matrix xI−A of a real n×n

matrix A in order to reduce xI − A to its unique Smith Normal Form.

1.) We may multiply any row (or column) of the matrix by a nonzero real number a.

2.) We may add any polynomial multiple of a row (or column) to another row (or column).

3.) We may interchange any pair of rows (or columns) of the matrix.

We continue using the shorthand Ri 7→ aRi to denote the operation of multiplying the ith row

of the matrix by a; we will use the shorthand Rj+p(x)Ri 7→ Rj to denote the operation of adding a

polynomial multiple p(x) of the ith row of the matrix to the jth row of the matrix (for any distinct

indices i and j); and we will use the shorthand Ri ↔ Rj to denote the operation of interchanging

the ith and jth rows of the matrix. Each of these elementary row operations can also be performed

with the ith and jth columns Ci and Cj of the matrix for any pair of distinct indices i and j.
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Example 2.4.3. Let us compute the Smith Normal Form for xI −A of the following 2× 2 matrix.

A =

[
1 0

1 −1

]

We will keep track of the elementary row operations by performing each such operation on the 2×2

identity matrix; likewise, we will keep track of the column operations by manipulating the columns

of the 2× 2 identity matrix according to the column operations on xI − A.

xI − A =

[
x− 1 0

−1 x+ 1

]

1.) C2 + (x+ 1)C1 7→ C2 xI − A ∼
[
x− 1 (x− 1)(x+ 1)

−1 0

]
Q ∼

[
1 x+ 1

0 1

]

2.) R1 ↔ R2 xI − A ∼
[

−1 0

x− 1 (x− 1)(x+ 1)

]
P ∼

[
0 1

1 0

]

3.) R2 + (x− 1)R1 7→ R2 xI − A ∼
[
−1 0

0 (x− 1)(x+ 1)

]
P ∼

[
0 1

1 x− 1

]

4.) −R1 7→ R1 xI − A ∼
[
1 0

0 (x− 1)(x+ 1)

]
P ∼

[
0 −1

1 x− 1

]

Consequently, the Smith Normal Form for xI−A and the invertible matrices P and Q are as follows.

SNF(xI − A) = P (xI − A)Q =

[
0 −1

1 x− 1

] [
x− 1 0

−1 x+ 1

] [
1 x+ 1

0 1

]
=

[
1 0

0 (x− 1)(x+ 1)

]

Even more, the only invariant factor of A is (x−1)(x+1), hence we have that µA(x) = (x−1)(x+1)

and χA(x) = (x − 1)(x + 1). Last, the elementary divisors of A are x − 1 and x + 1. Later, we

will discuss the notion of the elementary divisors of a square matrix at greater length; however, for

now, we remark that the elementary divisors can be determined as the largest powers of the distinct

linear factors of the invariant factors, hence in this case, they are x− 1 and x+ 1.

Example 2.4.4. Let us compute the Smith Normal Form for xI −A of the following 2× 2 matrix.

A =

[
0 1

0 0

]

We will keep track of the elementary row operations by performing each such operation on the 2×2

identity matrix; likewise, we will keep track of the column operations by manipulating the columns
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of the 2× 2 identity matrix according to the column operations on xI − A.

xI − A =

[
x −1

0 x

]

1.) C1 ↔ C2 xI − A ∼
[
−1 x

x 0

]
Q ∼

[
0 1

1 0

]

2.) R2 + xR1 7→ R2 xI − A ∼
[
−1 x

0 x2

]
P ∼

[
1 0

x 1

]

3.) C2 + xC1 7→ C2 xI − A ∼
[
−1 0

0 x2

]
Q ∼

[
0 1

1 x

]

4.) −R1 7→ R1 xI − A ∼
[
1 0

0 x2

]
P ∼

[
−1 0

x 1

]
Consequently, the Smith Normal Form for xI−A and the invertible matrices P and Q are as follows.

SNF(xI − A) = P (xI − A)Q =

[
−1 0

x 1

] [
x −1

0 x

] [
0 1

1 x

]
=

[
1 0

0 x2

]
Even more, the only invariant factor of A is x2, hence the minimal polynomial and the characteristic

polynomial of A are µA(x) = x2 and χA(x) = x2. Last, the only elementary divisor of A is x2.

Going forward into the case of 3×3 matrices, out of want for simplicity, we will not concern our-

selves with keeping track of the matrices P and Q; however, we note that (somewhat miraculously)

in order to determine the invertible matrix P that converts A to its Rational Canonical Form

or Jordan Canonical Form, it suffices to keep track only of the elementary row operations.

Example 2.4.5. Let us compute the Smith Normal Form for xI −A of the following 3× 3 matrix.

A =

1 1 1

2 2 2

3 3 3


We will keep track of the elementary row operations and often abbreviate column operations.

xI − A =

x− 1 −1 −1

−2 x− 2 −2

−3 −3 x− 3



1.) C1 ↔ C2 xI − A ∼

 −1 x− 1 −1

x− 2 −2 −2

−3 −3 x− 3


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2.) R2 + (x− 2)R1 7→ R2 xI − A ∼

−1 x− 1 −1

0 (x− 1)(x− 2)− 2 −(x− 2)− 2

−3 −3 x− 3



3.) R3 − 3R1 7→ R3 xI − A ∼

−1 x− 1 −1

0 (x− 1)(x− 2)− 2 −(x− 2)− 2

0 −3(x− 1)− 3 x



Perform column operations

and simplify the result.
xI − A ∼

1 0 0

0 x(x− 3) −x

0 −3x x



4.) C2 + (x− 3)C3 7→ C2 xI − A ∼

1 0 0

0 0 −x

0 −3x+ x(x− 3) x



5.) R3 +R2 7→ R3 xI − A ∼

1 0 0

0 0 −x

0 x(x− 6) 0



6.)
C2 ↔ C3

−C2 7→ C2
xI − A ∼

1 0 0

0 x 0

0 0 x(x− 6)


We note that this last matrix is by definition the Smith Normal Form for xI−A. Consequently, the

invariant factors of A are x and x(x−6); the elementary divisors of A are x, x, and x−6; the minimal

polynomial of A is µA(x) = x(x− 6); and the characteristic polynomial of A is χA(x) = x2(x− 6).

Example 2.4.6. Let us compute the Smith Normal Form for xI −A of the following 3× 3 matrix.

A =

1 0 2

0 1 0

0 0 1


We will keep track of the elementary row operations and often abbreviate column operations;

however, it is possible here to get away almost entirely with using column operations.

xI − A =

x− 1 0 −2

0 x− 1 0

0 0 x− 1


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1.) R3 +
1

2
(x− 1)R1 7→ R3 xI − A ∼

 x− 1 0 −2

0 x− 1 0
1
2
(x− 1)2 0 0



2.) C1 ↔ C3 xI − A ∼

−2 0 x− 1

0 x− 1 0

0 0 1
2
(x− 1)2



3.) − 1

2
C1 7→ C1 xI − A ∼

1 0 x− 1

0 x− 1 0

0 0 1
2
(x− 1)2



4.) C3 − (x− 1)C3 7→ C3 xI − A ∼

1 0 0

0 x− 1 0

0 0 1
2
(x− 1)2



5.) 2C3 7→ C3 xI − A ∼

1 0 0

0 x− 1 0

0 0 (x− 1)2


We note that this last matrix is the Smith Normal Form for xI − A. Consequently, the invariant

factors of A are x− 1 and (x− 1)2; the elementary divisors of A are x− 1 and (x− 1)2; the minimal

polynomial of A is µA(x) = (x− 1)2; and the characteristic polynomial of A is χA(x) = (x− 1)3.

Example 2.4.7. Observe that the characteristic matrix of the n × n zero matrix O is simply the

n×nmatrix xI. Consequently, the Smith Normal Form for the characteristic matrix of the n×n zero

matrix is the diagonal matrix consisting of n copies of x along the main diagonal. Particularly, the

invariant factors and the elementary divisors of O are x, x, . . . , x (n times); the minimal polynomial

of O is µO(x) = x; and the characteristic polynomial of O is χO(x) = xn.

Example 2.4.8. Observe that the characteristic matrix of the n×n identity matrix I is the matrix

(x− 1)I. Consequently, the Smith Normal Form for the characteristic matrix of the n× n identity

matrix is the diagonal matrix consisting of n copies of x− 1 along the main diagonal. Particularly,

the invariant factors and the elementary divisors of I are x−1, x−1, . . . , x−1 (n times); the minimal

polynomial of I is µI(x) = x− 1; and the characteristic polynomial of I is χI(x) = (x− 1)n.

We will come to find that the Rational Canonical Form for A is built out of the invariant factors

of A; similarly, the Jordan Canonical Form for A is built out of the elementary divisors of A. By

definition, the elementary divisors of A are the powers of the irreducible polynomial factors of the

invariant factors of A. We have tacitly used this fact already, but let us do some more examples.

Example 2.4.9. Given that the invariant factors of a matrix A are x− 1 and (x− 1)(x− 2), the

elementary divisors of A must be x− 1, x− 1, and x− 2; this must be a 3× 3 matrix with minimal

polynomial µA(x) = (x− 1)(x− 2) and characteristic polynomial χA(x) = (x− 1)2(x− 2).
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Example 2.4.10. Given that the invariant factors of a matrix A are x, x2, and x3(x + 1)2, the

elementary divisors of A must be x, x2, x3, and (x+1)2; this must be an 8×8 matrix with minimal

polynomial µA(x) = x3(x+ 1)2 and characteristic polynomial χA(x) = x6(x+ 1)2.

Example 2.4.11. Observe that there cannot be a matrix with invariant factors x − 1 and x + 1

because neither of these linear polynomials divides the other. Explicitly, they have distinct roots.

We provide an algorithm for determining the elementary divisors from the invariant factors.

Algorithm 2.4.12 (Converting Invariant Factors to Elementary Divisors). Let A be a real n× n

matrix whose invariant factors are known. Use the following to find the elementary divisors of A.

1.) Given the invariant factors pi(x) with p1(x) | p2(x) | · · · | pℓ(x), express each invariant factor

pi(x) as a product of distinct prime powers of irreducible polynomials.

2.) Construct an upper-triangular array whose ith column consists of the distinct prime powers

of irreducible polynomials qi1(x)
ei1 , . . . , qik(x)

eik such that pi(x) = qi1(x)
ei1 · · · qik(x)eik .

3.) We obtain the elementary divisors of A as the components of the upper-triangular array.

Example 2.4.13. By the previous algorithm, if A admits an invariant factor x(x − 1)2(x2 + 1)3,

then the elementary divisors of A corresponding to this invariant factor are x, (x−1)2, and (x2+1)3.

Conversely, it is possible to ask for the invariant factors from the elementary divisors. We

provide an algorithm for this task; however, we note that it is slightly more delicate than the last.

Algorithm 2.4.14 (Converting Elementary Divisors to Invariant Factors). Let A be a real n× n

matrix whose elementary divisors are known. Use the following to find the invariant factors of A.

1.) Find the irreducible polynomial p(x) that appears the most times among the elementary

divisors of A. Choose one arbitrarily if more than one polynomial fits this criterion.

2.) Create an array whose first row consists of all powers of p(x) that appear as elementary

divisors of A, listing these powers in non-decreasing order from left to right.

3.) Repeat the second step in the second row with the irreducible polynomial q(x) that appears

the second most times among the elementary divisors of A.

4.) Continue this process until all irreducible polynomials appearing as elementary divisors of A

have been written in a row. One should end with an upper-triangular array.

5.) By multiplying the elements of each consecutive column, we obtain the invariant factors of A.

Example 2.4.15. Given that the elementary divisors of a matrix A are x, x, x2, x3, x− 1, x2 + 1,

and x2 + 1, the previous algorithm leads us to the following upper-triangular array.

x x x2 x3

x2 + 1 x2 + 1

x− 1

Consequently, the invariant factors of A are the products of the columns of this array, i.e., they

are x, x, x2(x2 + 1), and x3(x− 1)(x2 + 1). We conclude that A is a 12× 12 matrix with minimal

polynomial µA(x) = x3(x− 1)(x2 + 1) and characteristic polynomial χA(x) = x7(x− 1)(x2 + 1)2.
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Example 2.4.16. Given that the elementary divisors of a matrix A are x2, x2, x2 + x + 1, and

x2 + x+ 1, the previous algorithm leads us to the following upper-triangular array.

x2 x2

x2 + x+ 1 x2 + x+ 1

Consequently, the invariant factors of A are the products of the columns of this array, i.e., they are

x2(x2 + x+1) and x2(x2 + x+1). We conclude that A is an 8× 8 matrix with minimal polynomial

µA(x) = x2(x2 + x+ 1) and characteristic polynomial χA(x) = x4(x2 + x+ 1)2.

Example 2.4.17. Observe that there cannot be a 3× 3 matrix with elementary divisors x2 and x2

because this would force the characteristic polynomial to be x4, and this is impossible.

Example 2.4.18. Likewise, there cannot be any 3× 3 matrices with elementary divisors x and x

because this would force the characteristic polynomial to be x2, and this is impossible.

2.5 Rational Canonical Form

Last section, we defined the Smith Normal Form of the characteristic matrix of a real n×n matrix.

Essentially, the Smith Normal Form provides a generalization of the reduced row echelon form of a

matrix with entries that do not belong to a field: polynomials do not admit multiplicative inverses,

so a matrix whose entries consist of polynomials might not admit a typical reduced row echelon form

consisting of zeros and ones; however, the Smith Normal Form guarantees that every such matrix

can be placed in a unique diagonal form consisting of ones and polynomials along the diagonal in

such a manner that each of the non-constant polynomials divides the next. Even more, the Smith

Normal Form provides the invariant factors and elementary divisors of a real n×n matrix. We will

see throughout this section and the next that this information leads to canonical forms that are (in

a strict sense) “simplest” and from which the properties of a matrix can be easily deduced.

Given any monic polynomial p(x) = xn+αn−1x
n−1+ · · ·+α2x

2+α1x+α0 of degree n, we define

the companion matrix of the polynomial p(x) as the following n× n matrix.

Cp(x) =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


Example 2.5.1. Observe that the companion matrix of any linear polynomial x + c is

[
−c

]
.

Explicitly, the companion matrix of x is
[
0
]
, and the companion matrix of x− 1 is

[
1
]
.

Example 2.5.2. Observe that the companion matrix of any quadratic polynomial x2 + ax+ b is[
0 −b

1 −a

]
.

Explicitly, the companion matrix of x2 + 1 is given as follows.[
0 −1

1 0

]
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Likewise, the companion matrix of x2 + x+ 1 is the following.[
0 −1

1 −1

]
Crucially, the characteristic polynomial and minimal polynomial of the companion matrix of a

monic polynomial p(x) = xn + αn−1x
n−1 + · · ·+ α2x

2 + α1x+ α0 are both simply p(x).

Proposition 2.5.3. Consider any monic polynomial p(x) = xn+αn−1x
n−1+ · · ·+α2x

2+α1x+α0

of positive degree n and the following companion matrix Cp(x) of the polynomial p(x).

Cp(x) =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1


Both the characteristic polynomial and the minimal polynomial of Cp(x) are equal to p(x).

Proof. We will prove that the characteristic polynomial of Cp(x) is equal to p(x). We proceed by

induction on the degree n of p(x). Certainly, if n = 1, then the companion matrix of p(x) = x+ α0

is annihilated by p(x) because it holds that Cp(x) =
[
−α0

]
so that p(Cp(x)) = Cp(x) + α0I = O. We

conclude in this case that p(x) is the minimal polynomial of Cp(x) by Proposition 2.1.9, hence it is

the characteristic polynomial by Proposition 2.1.13. We will assume by induction that the claim

holds for all monic polynomials of degree n− 1. Consider the characteristic matrix xI − Cp(x).

xI − Cp(x) =


x 0 · · · 0 α0

−1 x · · · 0 α1

0 −1
. . . 0 α2

...
...

. . .
...

...

0 0 · · · −1 x+ αn−1


By definition, the characteristic polynomial of Cp(x) is det(xI −Cp(x)). Expanding the determinant

along the first row yields det(xI − Cp(x)) = x det(xI − Cq(x)) + (−1)n+1α0 det(A) for the matrices

xI − Cq(x) =


x 0 · · · 0 α1

−1 x · · · 0 α2

0 −1
. . . 0 α3

...
...

. . .
...

...

0 0 · · · −1 x+ αn−1

 and A =


−1 x 0 · · · 0

0 −1 x · · · 0

0 0 −1
. . . 0

...
...

...
. . .

...

0 0 0 · · · −1


obtained as (n−1)× (n−1) submatrices of xI−Cp(x) by deleting the first row and first column and

the first row and nth column of xI−Cp(x), respectively. Observe that Cq(x) is the companion matrix

of the monic polynomial q(x) = xn−1 + αn−1x
n−2 + · · ·+ α3x

2 + α2x+ α1, hence by induction, the

characteristic polynomial and the minimal polynomial of Cq(x) are both q(x). Particularly, it follows



98 CHAPTER 2. CANONICAL FORMS OF MATRICES

that x det(xI−Cq(x)) = xq(x) = xn+αn−1x
n−1+ · · ·+α3x

3+α2x
2+α1x = p(x)−α0. On the other

hand, we note that A is an upper-triangular matrix with n−1 copies of −1 along the diagonal, hence

we conclude by Proposition 2.3.11 that det(A) = (−1)n−1 and (−1)n+1α0 det(A) = α0. Combined,

these two calculations reveal that det(xI − Cp(x)) = p(x)− α0 + α0 = p(x), as desired.

Even though it is a bit contrived, we will prove that p(x) is the minimal polynomial of Cp(x) by

demonstrating that no monic polynomial of strictly lesser degree annihilates Cp(x). Observe that for

the n × 1 standard basis vector e1 consisting of one in the first row and zeros elsewhere, we have

that Cp(x)e1 = e2 so that C2
p(x)e1 = Cp(x)e2 = e3 and Ck

p(x)e1 = ek+1 for all integers 1 ≤ k ≤ n− 1.

Consequently, for any monic polynomial q(x) = xn−1 + βn−2x
n−2 + · · · + β2x

2 + β1x + β0, we have

that q(Cp(x))e1 = en + βn−2en−1 + · · · + β2e3 + β1e2 + β0e1. We conclude that q(Cp(x)) is nonzero,

hence there cannot be a monic polynomial of degree less than n that annihilates Cp(x).

Given any (real) matrices A1, . . . , Ak such that Ai is an ni×ni matrix for each integer 1 ≤ i ≤ k,

the direct sum of A1, . . . , Ak is the (real) (n1 + · · ·+ nk)× (n1 + · · ·+ nk) matrix

A1 ⊕ · · · ⊕ Ak =

A1 0 0

0
. . . 0

0 0 Ak


constructed by arranging the matrices A1, . . . , Ak along the main diagonal and completing the

matrix with zeros elsewhere. We refer to a square matrix of this form as a block diagonal matrix.

Example 2.5.4. Every diagonal matrix can be realized as a block diagonal matrix whose compo-

nents along the main diagonal are simply 1× 1 matrices. Explicitly, we have the following.
a11 0 · · · 0

0 a22 · · · 0

0 0
. . . 0

0 0 · · · ann

 =
[
a11

]
⊕
[
a22

]
⊕ · · · ⊕

[
ann

]

Example 2.5.5. By definition, the direct sum of a 1× 1 and a 2× 2 matrix matrix is a 3× 3 block

diagonal matrix. Explicitly, the direct sum is a matrix of the following form.

[
a11

]
⊕

[
b11 b12
b21 b22

]
=

a11 0 0

0 b11 b12
0 b21 b22


Block diagonal matrices behave in a civilized manner with respect to taking determinants and

computing their characteristic matrices. Consequently, the determinant, characteristic polynomial,

and minimal polynomial of a block diagonal matrix can be easily deduced as follows.

Proposition 2.5.6. Given any square matrices A1, . . . , Ak, we have that

det(A1 ⊕ · · · ⊕ Ak) = det(A1) · · · det(Ak).

Proof. By definition of the direct sum of matrices, we have the following.

A1 ⊕ · · · ⊕ Ak =

A1 0 0

0
. . . 0

0 0 Ak


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By Theorem 1.10.13, there exist scalars α1, . . . , αk such that det(Ai) = αi det(RREF(Ai)) for each

integer 1 ≤ i ≤ k. Considering that the matrix A1⊕· · ·⊕Ak is block diagonal, performing elementary

row operations on any submatrix Ai does not affect any of the other submatrices, hence we may

reduce each of the matrices A1, . . . , Ak to its reduced row echelon form at the cost of some scalar.

det(A1 ⊕ · · · ⊕ Ak) = α1 · · ·αk

∣∣∣∣∣∣∣
RREF(A1) 0 0

0
. . . 0

0 0 RREF(Ak)

∣∣∣∣∣∣∣
Either the reduced row echelon form of each of the matrices A1, . . . , Ak is the appropriately-sized

identity matrix, or the reduced row echelon form of some matrix possesses a zero row. Certainly,

in the first case, the determinant of the matrix in the above displayed equation is one, and we

conclude that det(A1⊕· · ·⊕Ak) = α1 · · ·αk. Even more, the determinant of each matrix Ai satisfies

that det(Ai) = αi, hence it holds that det(A1 ⊕ · · · ⊕ Ak) = det(A1) · · · det(Ak). Conversely, if the

reduced row echelon form of some matrix possesses a zero row, then the determinant of the matrix

in the above displayed equation is zero so that det(A1 ⊕ · · · ⊕ Ak) = 0 = det(A1) · · · det(Ak).

Corollary 2.5.7. Given any square matrices A1, . . . , Ak with respective characteristic polynomials

χ1(x), . . . , χk(x), the characteristic polynomial of A1 ⊕ · · · ⊕ Ak is χ1(x) · · ·χk(x).

Proof. Considering that xI − (A1 ⊕ · · · ⊕ Ak) = (xI − A1) ⊕ · · · ⊕ (xI − Ak), the claim follows

immediately from the definition of the characteristic polynomial and Proposition 2.5.6.

Proposition 2.5.8. Given any square matrices A1, . . . , Ak with respective minimal polynomials

µ1(x), . . . , µk(x), the minimal polynomial of A1 ⊕ · · · ⊕ Ak is lcm(µ1(x), . . . , µk(x)).

Proof. We claim that for any polynomial p(x), we have that p(A1⊕· · ·⊕Ak) = p(A1)⊕· · ·⊕p(Ak).

Considering that the identity α(A1 ⊕ · · · ⊕ Ak) = (αA1) ⊕ · · · ⊕ (αAk) clearly holds, it suffices to

prove that (A1 ⊕ · · · ⊕ Ak)
n = (An

1 )⊕ · · · ⊕ (An
k) for any positive integer n: indeed, we have that

(A1 ⊕ · · · ⊕ Ak)
2 =

A1 0 0

0
. . . 0

0 0 Ak


A1 0 0

0
. . . 0

0 0 Ak

 =

A
2
1 0 0

0
. . . 0

0 0 A2
k

 = (A2
1)⊕ · · · ⊕ (A2

k)

because the only nonzero entries of this matrix product come from the rows and columns corre-

sponding to the matrix Ai for each integer 1 ≤ i ≤ k. Certainly, it is possible to repeat this process

for any positive integer n, hence the desired identity p(A1 ⊕ · · · ⊕Ak) = p(A1)⊕ · · · ⊕ p(Ak) holds.

Consider the least common multiple p(x) = lcm(µ1(x), . . . , µk(x)) of the minimal polynomials

of A1, . . . , Ak. By definition, for each integer 1 ≤ i ≤ k, there exists a polynomial qi(x) such that

p(x) = µi(x)qi(x), from which it follows that p(x) annihilates the matrices A1, . . . , Ak. Consequently,

we find that p(x) annihilates A1⊕· · ·⊕Ak, hence by Proposition 2.1.9, we conclude that p(x) must

be divisible by the minimal polynomial µ(x) of A1 ⊕ · · · ⊕ Ak. Conversely, if µ(x) annihilates the

direct sum A1⊕· · ·⊕Ak, then it must annihilate each of the matrices A1, . . . , Ak because it holds by

the previous paragraph that µ(A1 ⊕ · · · ⊕Ak) = µ(A1)⊕ · · · ⊕ µ(Ak), and the latter is equal to the

zero matrix if and only if µ(Ai) is equal to the zero matrix for each integer 1 ≤ i ≤ k. By Proposition

2.1.9, µ(x) is divisible by µ1(x), . . . , µk(x), hence it is divisible by p(x) = lcm(µ1(x), . . . , µk(x)).
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We are at last ready to construct the Rational Canonical Form of a real n× n matrix.

Definition 2.5.9 (Rational Canonical Form). Consider any (real) n × n matrix A with invariant

factors p1(x), p2(x), . . . , pℓ(x) whose companion matrices are Cp1(x), Cp2(x), . . . , Cpℓ(x), respectively.

We define the Rational Canonical Form of A as the (real) n× n matrix

RCF(A) = Cp1(x) ⊕ Cp2(x) ⊕ · · · ⊕ Cpℓ(x) =


Cp1(x) 0 0 0

0 Cp2(x) 0 0

0 0
. . . 0

0 0 0 Cpℓ(x)


Example 2.5.10. Let us compute the Rational Canonical Form for the matrix of Example 2.4.3.

A =

[
1 0

1 −1

]
We proved in that example that the only invariant factor of A is (x−1)(x+1) = x2−1. Consequently,

the Rational Canonical Form for A is the companion matrix of this quadratic polynomial.

RCF(A) = Cx2−1 =

[
0 1

1 0

]
Example 2.5.11. Let us compute the Rational Canonical Form for the matrix of Example 2.4.4.

A =

[
0 1

0 0

]
We proved in that example that the only invariant factor of A is x2. Like the previous example, the

Rational Canonical Form for A must be the companion matrix of x2.

RCF(A) = Cx2 =

[
0 0

1 0

]
Example 2.5.12. Let us compute the Rational Canonical Form for the matrix of Example 2.4.5.

A =

1 1 1

2 2 2

3 3 3


We proved in that example that the invariant factors of A are x and x(x−6) = x2−6x. Consequently,

the Rational Canonical Form for A is the direct sum of the companion matrices of x and x2 − 6x.

RCF(A) = Cx ⊕ Cx2−6x =
[
0
]
⊕

[
0 0

1 6

]
=

0 0 0

0 0 0

0 1 6


Example 2.5.13. Let us compute the Rational Canonical Form for the matrix of Example 2.4.6.

A =

1 0 2

0 1 0

0 0 1


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Considering that the invariant factors of A are x−1 and (x−1)2 = x2−2x+1 by the example, the

Rational Canonical Form for A is the direct sum of the companion matrices of x−1 and x2−2x+1.

RCF(A) = Cx−1 ⊕ Cx2−2x+1 =
[
1
]
⊕
[
0 −1

1 2

]
=

1 0 0

0 0 −1

0 1 2


Example 2.5.14. Consider any matrix A whose invariant factors are x − 1 and (x − 1)(x − 2).

Observe that any such matrix must be a 3× 3 matrix. By definition, the Rational Canonical Form

for such a matrix is the direct sum of the companion matrices of x−1 and (x−1)(x−2) = x2−3x+2.

RCF(A) = Cx−1 ⊕ Cx2−3x+2 =
[
1
]
⊕
[
0 −2

1 3

]
=

1 0 0

0 0 −2

0 1 3


Example 2.5.15. Consider any matrix A whose invariant factors are x, x2, and x3(x+1)2. Observe

that any such matrix must be an 8×8 matrix. By definition, the Rational Canonical Form for such

a matrix is the direct sum of the companion matrices of x, x2, and x3(x+ 1)2 = x5 + 2x4 + x3.

RCF(A) = Cx ⊕ Cx2 ⊕ Cx5+2x4+x3 =
[
0
]
⊕
[
0 0

1 0

]
⊕


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 −1

0 0 0 1 −2


Example 2.5.16. Consider any matrix A whose invariant factors are x, x, x2(x2 + 1) = x4 + x2,

and x3(x− 1)(x2+1) = x3(x3−x2+x− 1) = x6−x5+x4−x3. Observe that any such matrix must

be a 12 × 12 matrix. By definition, the Rational Canonical Form for such a matrix is the direct

sum of the companion matrices of x, x, x4 + x2, and x6 − x5 + x4 − x3.

RCF(A) = Cx ⊕ Cx ⊕ Cx4+x2 ⊕ Cx6−x5+x4−x3

=
[
0
]
⊕

[
0
]
⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 0

⊕
[
0
]
⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 0

⊕



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 −1

0 0 0 0 1 1


Example 2.5.17. Consider any matrix A with two invariant factors of x2(x2+x+1) = x4+x3+x2.

Observe that any such matrix must be an 8× 8 matrix, and the Rational Canonical Form for such

a matrix must be the direct sum of the companion matrix of x4 + x3 + x2 with itself.

RCF(A) = Cx4+x3+x2 ⊕ Cx4+x3+x2 =


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 −1

⊕


0 0 0 0

1 0 0 0

0 1 0 −1

0 0 1 −1


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2.6 Jordan Canonical Form

Like the Rational Canonical Form, the Jordan Canonical Form of an n × n matrix is a block

diagonal matrix built as a direct sum of square matrices that are obtained from the Smith Normal

Form of the characteristic matrix. Explicitly, suppose that A is a (real) n×nmatrix with elementary

divisors (x−ci1)
ei1 , . . . , (x−cik)

eik .We refer to the following eij×eij upper-triangular matrix J(x−cij)
eij

as the Jordan matrix (or Jordan block) corresponding to the elementary divisor (x− cij)
eij .

J(x−cij)
eij =


cij 1 0 · · · 0

0 cij 1 · · · 0

0 0 cij
. . . 0

...
...

...
. . . 1

0 0 0 · · · cij


Put another way, the Jordan matrix corresponding to the elementary divisor (x−cij)

eij is the eij×eij
upper-triangular matrix consisting of cij on the diagonal and ones along the superdiagonal.

Example 2.6.1. By definition, the Jordan matrix corresponding to any linear polynomial x+ c is

the 1× 1 matrix Jx+c =
[
−c

]
. One might recognize this as the companion matrix of x+ c.

Example 2.6.2. By definition, the Jordan matrix corresponding to the polynomial (x− 1)2 is the

2× 2 upper-triangular matrix with ones along the diagonal and ones along the superdiagonal.

J(x−1)2 =

[
1 1

0 1

]
Example 2.6.3. By definition, the Jordan matrix corresponding to the polynomial (x+ 3)3 is the

3× 3 upper-triangular matrix with −3s along the diagonal and ones along the superdiagonal.

J(x+3)3 =

−3 1 0

0 −3 1

0 0 −3


Definition 2.6.4 (Jordan Canonical Form). Consider any (real) n× n matrix A with elementary

divisors (x− ci1)
ei1 , (x− ci2)

ei2 , . . . , (x− cik)
eik and their corresponding Jordan matrices J(x−ci1)ei1 ,

J(x−ci2)ei2 , . . . , J(x−cik)
eik . We define the Jordan Canonical Form of A as the n× n matrix

JCF(A) = J(x−ci1)ei1 ⊕ J(x−ci2)ei2 ⊕ · · · ⊕ J(x−cik)
eik =


J(x−ci1)ei1 0 0 0

0 J(x−ci2)ei2 0 0

0 0
. . . 0

0 0 0 J(x−cik)
eik


Example 2.6.5. Let us compute the Jordan Canonical Form for the matrix of Example 2.4.3.

A =

[
1 0

1 −1

]
We proved in that example that the elementary divisors of A are x − 1 and x + 1. Consequently,

the Jordan Canonical Form for A is the direct sum of the 1× 1 Jordan matrices Jx−1 and Jx+1.

JCF(A) = Jx−1 ⊕ Jx+1 =
[
1
]
⊕
[
−1

]
=

[
1 0

0 −1

]
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Example 2.6.6. Let us compute the Jordan Canonical Form for the matrix of Example 2.4.4.

A =

[
0 1

0 0

]
We proved in that example that the only elementary divisor of A is x2. Like the previous example,

the Jordan Canonical Form for A must be the 2× 2 Jordan matrix Jx2 .

JCF(A) = Jx2 =

[
0 1

0 0

]
Example 2.6.7. Let us compute the Jordan Canonical Form for the matrix of Example 2.4.5.

A =

1 1 1

2 2 2

3 3 3


We proved in that example that the elementary divisors of A are x, x, and x− 6. Consequently, the

Jordan Canonical Form for A is the direct sum of the 1× 1 Jordan matrices Jx, Jx, and Jx−6.

JCF(A) = Jx ⊕ Jx ⊕ Jx−6 =
[
0
]
⊕
[
0
]
⊕
[
6
]
=

0 0 0

0 0 0

0 0 6


Example 2.6.8. Let us compute the Jordan Canonical Form for the matrix of Example 2.4.6.

A =

1 0 2

0 1 0

0 0 1


By the example, the elementary divisors of A are x − 1 and (x − 1)2, hence the Jordan Canonical

Form for A is the direct sum of the 1× 1 Jordan matrix Jx−1 and the 2× 2 Jordan matrix J(x−1)2 .

JCF(A) = Jx−1 ⊕ J(x−1)2 =
[
1
]
⊕
[
1 1

0 1

]
=

1 0 0

0 1 1

0 0 1


Example 2.6.9. Consider any matrix A whose elementary divisors are x − 1, x − 1, and x − 2.

Observe that any such matrix must be a 3 × 3 matrix. By definition, the Jordan Canonical Form

for such a matrix is the direct sum of the Jordan matrices Jx−1, Jx−1, and Jx−2.

JCF(A) = Jx−1 ⊕ Jx−1 ⊕ Jx−2 =
[
1
]
⊕
[
1
]
⊕
[
2
]
=

1 0 0

0 1 0

0 0 2


Example 2.6.10. Consider any matrix A whose elementary divisors are x, x2, x3, and (x + 1)2.

Observe that any such matrix must be an 8× 8 matrix. By definition, the Jordan Canonical Form

for such a matrix is the direct sum of the Jordan matrices corresponding to x, x2, x3, and (x+1)2.

JCF(A) = Jx ⊕ Jx2 ⊕ Jx3 ⊕ J(x+1)2 =
[
0
]
⊕
[
0 1

0 0

]
⊕

0 1 0

0 0 1

0 0 0

⊕
[
−1 1

0 −1

]



104 CHAPTER 2. CANONICAL FORMS OF MATRICES

Example 2.6.11. Consider any real matrix A whose invariant factors are x, x, x2(x2 + 1), and

x3(x− 1)(x2 + 1). Observe that both roots of the polynomial x2 + 1 are complex numbers: indeed,

the roots of x2 +1 are i and −i. Consequently, if we view A a real matrix, then A does not admit a

Jordan Canonical Form. Explicitly, the Jordan Canonical Form is built from the Jordan matrices

corresponding to powers of linear polynomials: if x2 + 1 is an elementary divisor of A, then viewed

as a real polynomial, this polynomial does not split as a product of linear polynomials; however, if

we view A as a matrix whose entries are complex numbers, then we may view x2+1 as a polynomial

with complex coefficients, hence it is permissible to factor x2 + 1 as (x+ i)(x− i). Under this lens,

the elementary divisors of A are x, x, x2, x3, x − 1, x − i, x + i, x − i, and x + i. Consequently, the

Jordan Canonical Form for A is the following 12× 12 complex upper-triangular matrix.

JCF(A) = Jx ⊕ Jx ⊕ Jx2 ⊕ Jx3 ⊕ Jx−1 ⊕ Jx−i ⊕ Jx+i ⊕ Jx−i ⊕ Jx+i

=
[
0
]
⊕

[
0
]
⊕

[
0 1

0 0

]
⊕

0 1 0

0 0 1

0 0 0

⊕
[
1
]
⊕
[
i
]
⊕
[
−i

]
⊕
[
i
]
⊕
[
−i

]
Example 2.6.12. Consider any matrix A with elementary divisors of x2, x2, x2 + x + 1, and

x2 + x + 1. Observe that the Jordan Canonical Form for such a matrix exists if and only if we

view A as a matrix with complex entries: indeed, the polynomial x2 + x+ 1 has two complex roots

−1
2
+

√
3
2
i and −1

2
−

√
3
2
i. Consequently, the Jordan Canonical Form for A is the following.

JCF(A) = Jx2 ⊕ Jx2 ⊕ J
x+ 1

2
−

√
3
2
i
⊕ J

x+ 1
2
+

√
3

2
i
=

[
0 1

0 0

]
⊕
[
0 1

0 0

]
⊕

[
−1

2
+

√
3

2
i

]
⊕
[
−1

2
−

√
3

2
i

]
Remark 2.6.13. Examples 2.6.11 and 2.6.12 raise an important point regarding the Jordan Canon-

ical Form of a square matrix A: it exists if and only if the elementary divisors of A are all power

of linear polynomials. Consequently, if we want the Jordan Canonical Form to exist for any square

matrix, we must assume that the entries of our matrix lie in an algebraically closed field, i.e., we

must ensure that the characteristic polynomial of our matrix can be written as a product of (not

necessarily distinct) linear polynomials. Often, the caveat with the Jordan Canonical Form is that

it is an upper-triangular matrix with entries in the complex numbers. Conversely, the Rational

Canonical Form of a matrix always exists; however, it is rarely an upper-triangular matrix. Even

still, in most cases, the Jordan Canonical Form is preferable to the Rational Canonical Form because

of its upper-triangular form. One can prove that the determinant of a matrix is the product of its

eigenvalues, hence the product of the eigenvalues of a real matrix must be a real number. We could

have predicted this based on the fact that complex roots come in conjugate pairs whose product

is a real number. Even more, the trace of a matrix is the sum of the diagonal components of the

matrix; this can be achieved as the sum of the eigenvalues. Once again, if the matrix is real, then

the sum of its eigenvalues is a real number because each conjugate pair of complex eigenvalues sum

to a real number. Consequently, the requirement to pass to the complex numbers is not detrimental.

2.7 Chapter Overview

This section is currently under construction.



Chapter 3

Linear Transformations of Vector Spaces

By now, we are sufficiently familiar with the theory of n × n matrices whose entries lie in a field.

Culminating in the construction of canonical forms, our studies have led us to develop sophisticated

machinery to understand both the algebraic and geometric properties of real n × n matrices. Our

principal aim throughout this chapter is to recognize that real n-space and real m × n matrices

belong to a more general notion of vector spaces and linear transformations of vector spaces that

are ubiquitous throughout mathematics and physics. Explicitly, we will demonstrate that every

linear transformation of real n-space is uniquely determined by a real m×n matrix and vice-versa.

Even more, we will explore other Euclidean vector spaces, e.g., real polynomials and real functions.

3.1 Linear Transformations of Euclidean Spaces

We begin our discussion by introducing a class of “ideal” functions from real n-space to real m-space

for positive integers m and n. We recall that a function f : X → Y from a nonempty set X to a

nonempty set Y is a relation such that for each element x in X, there is one and only one element

y = f(x) in Y. Each function from a nonempty set X to a nonempty set Y induces the following.

1.) We recall that the domain Df of the function f : X → Y consists of all x-values for which

y = f(x) is well-defined. Consequently, we have thatDf = {x ∈ X | y = f(x) is well-defined}.
Often, we will assume that the domain of a function f : X → Y is simply X, but in some

cases (such as those arising in calculus), it is required to determine the domain of f explicitly.

2.) We refer to the set Y as the codomain of the function f : X → Y. We say that y = f(x) is

the image of the element x in X. Crucially, it is not necessarily true that every element of Y

must be the image of some element in X. Explicitly, the collection f(A) of all elements y in Y

for which y = f(x) for some element x in A is called the image of A under f. Consequently,

we have that f(A) = {y ∈ Y | y = f(x) for some element x in A}. We are familiar with the

image of the entire domain X under f : it is called the range Rf of f, i.e., Rf = f(X).

3.) Given any nonempty subset B of Y, the collection f−1(B) of all elements x in X for which

y = f(x) is an element of B is called the inverse image of B under f. Consequently, we have

that f−1(B) = {y ∈ B | y = f(x) for some element x in X}; this could be empty!
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We turn our attention next to the structure-preserving functions between real n-space.

Definition 3.1.1. Given any positive integers m and n, we say that a function T : Rn → Rm is a

linear transformation if and only if it preserves addition and scalar multiplication, i.e.,

1.) T (v +w) = T (v) + T (w) for all vectors v and w of real n-space and

2.) T (αv) = αT (v) for all vectors v in real n-space and all scalars α.

Conveniently, it is possible to summarize the above pair of linearity conditions as follows.

Proposition 3.1.2. Given any positive integers m and n, the function T : Rn → Rm is a linear

transformation if and only if T (αv +w) = αT (v) + T (w) for all vectors v and w and scalars α.

Proof. Certainly, if the function T : Rn → Rm is a linear transformation, then by Definition 3.1.1,

it holds that T (αv +w) = T (αv) + T (w) = αT (v) + T (w) for all vectors v and w in real n-space

and all scalars α. Conversely, if we assume that T (αv +w) = αT (v) + T (w) for all vectors v and

w of real n-space and all scalars α, then in particular, we may evaluate T (0) to find that

T (0) = T (0+ 0) = T (0) + T (0).

Cancelling T (0) from both sides, we find that T (0) = 0. Consequently, it follows that

1.) T (v +w) = T (1v +w) = 1T (v) + T (w) = T (v) + T (w) and

2.) T (αv) = T (αv + 0) = αT (v) + T (0) = αT (v) + 0 = αT (v)

for all vectors v and w in real n-space and scalars α; as such, the asserted claim holds.

Even more, we collect in the next proposition two useful properties of linear transformations.

Proposition 3.1.3 (Basic Properties of Linear Transformations of Euclidean Spaces). Consider

any linear transformation T : Rn → Rm defined for any positive integers m and n.

1.) We have that T (α1v1 + · · · + αnvn) = α1T (v1) + · · · + αnT (vn) for all vectors v1, . . . ,vn in

real n-space and all scalars α1, . . . , αn. Put another way, the image of a linear combination of

vectors under a linear transformation is the linear combination of the images of the vectors.

2.) We have that T (0) = 0 for the respective zero vectors 0 of real n-space and real m-space.

Proof. We prove the first property by the Principle of Mathematical Induction applied to the number

of vectors n. By definition of a linear transformation, the claim holds for n = 1, so we may assume

inductively that T (α1v1 + · · · + αnvn) = α1T (v1) + · · · + αnT (vn) for all vectors v1, . . . ,vn ∈ Rn

and all scalars α1, . . . , αn. By definition of a linear transformation, we have that

T (α1v1 + · · ·+ αnvn + αn+1vn+1) = T (α1v1 + · · ·+ αnvn) + T (αn+1vn+1).

By hypothesis, the first summand is equal to α1T (v1) + · · · + αnT (vn), from which it follows that

T (α1v1 + · · ·+ αnvn + αn+1vn+1) = α1T (v1) + · · ·+ αnT (vn) + αn+1T (vn+1), as desired.

On the matter of the second property, we use the linearity of the function T to first recognize

that T (0+ 0) = T (0) + T (0). On the other hand, the zero vector satisfies that 0+ 0 = 0, hence we

have that T (0) + T (0) = T (0+ 0) = T (0). Cancelling T (0) from both sides yields T (0) = 0.
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Example 3.1.4. We claim that the function T : R2 → R2 defined by T (x, y) = (−y, x) is a linear

transformation called the orthogonalization of (x, y) in the xy-plane.

1.) Given any vectors v = [x1, y1] and w = [x2, y2], we have that v +w = [x1 + x2, y1 + y2] and

T (v+w) = T (x1 + x2, y1 + y2) = (−y1 − y2, x1 + x2) = (−y1, x1) + (−y2, x2) = T (v) + T (w).

2.) Given any vector v = [x, y] and any scalar α, we have that αv = [αx, αy] and

T (αv) = T (αx, αy) = (−αy, αx) = α(−y, x) = αT (v).

By definition, we conclude that T : R2 → R2 defined by T (x, y) = (−y, x) is a linear transformation.

Example 3.1.5. We claim that the function T : R3 → R2 defined by T (x, y, z) = (x, y) is a linear

transformation called the projection of (x, y, z) into the xy-plane.

1.) Given any vectors v = [x1, y1, z1] and w = [x2, y2, z2], we have that

T (v+w) = T (x1+x2, y1+y2, z1+z2) = (x1+x2, y1+y2) = (x1, y1)+(x2, y2) = T (v)+T (w).

2.) Given any vector v = [x, y, z] and any scalar α, we have that αv = [αx, αy, αz] and

T (αv) = T (αx, αy, αz) = (αx, αy) = α(x, y) = αT (v).

By definition, we conclude that T : R3 → R2 defined by T (x, y, z) = (x, y) is a linear transformation.

Example 3.1.6. We claim that the function T : R → R3 defined by T (x) = (x, x2, x3) is not a

linear transformation: indeed, it is possible to deduce this based purely on the fact that x2 and x3

are not linear functions; however, a concrete example to illustrate that T is not linear is that

T (2) = (2, 22, 23) = (2, 4, 8) ̸= (2, 2, 2) = 2(1, 1, 1) = 2T (1).

Example 3.1.7. We will explicitly determine in this example all linear transformations T : R → R
from the real line to itself; then, we will give a geometric interpretation of the image of such functions

in the Cartesian plane. By Definition 3.1.1, for every real number x, we must have that

T (x) = xT (1) = T (1)x.

Consequently, the image T (x) of x under T for any real number x is uniquely determined by the

image T (1) of 1 under T. Even more, if we denote T (1) = m, then T (x) = mx for all real numbers

x, hence the linear transformation T : R → R are precisely the lines through the origin.

Often, it is more tedious than it is difficult to determine according to Definition 3.1.1 whether a

function T : Rn → Rm is a linear transformation; however, our next theorem provides a classification

of all linear transformations of real n-space that eliminates our need to refer to the definition.

Theorem 3.1.8 (Linear Transformations of Euclidean Spaces and Real Matrices). Given any posi-

tive integers m and n, a function T : Rn → Rm is a linear transformation if and only if there exists

a real m× n matrix A such that T (v) = Av for every vector v in real n-space.
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Proof. We prove first that if A is any real m× n matrix, then the function TA(v) = Av is a linear

transformation TA : Rn → Rm. Considering any vector v in real n-space as a real n × 1 matrix,

it follows that Av is a real m × 1 matrix, hence TA : Rn → Rm is well-defined by its domain and

codomain. Even more, for any vectors v and w in real n-space and any scalar α, we have that

TA(αv +w) = A(αv +w) = A(αv) + Aw = αAv + Aw = αTA(v) + TA(w)

because Matrix Multiplication Is Distributive. By Proposition 3.1.2, TA is a linear transformation.

Conversely, we demonstrate that if T : Rn → Rm is a linear transformation, then there exists a

real m×n matrix A such that T (v) = Av for every vector v in real n-space. Considering that T is

a linear transformation, every coordinate of T (v) must be a linear combination of the coordinates

of v. Consequently, if we assume that the coordinates of v are given by v = [v1, v2, . . . , vn], then

there must exist real numbers ai1, ai2, . . . , ain for each integer 1 ≤ i ≤ m such that

T (v) =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...

am1v1 + am2v2 + · · ·+ amnvn

 =


a11
a21
...

am1

v1 +

a12
a22
...

am2

v2 + · · ·+


a1n
a2n
...

amn

vn.
By Remark 1.3.20, we find that T (v) = Av for the real m× n matrix A with (i, j)th entry aij.

We refer to the matrix of Theorem 3.1.8 as the matrix representation of the linear transfor-

mation T : Rn → Rm (with respect to the standard basis vectors of real n-space). Eventually, we

will come to find that the matrix representation of a linear transformation is an indispensable tool

in the theory of linear transformations of vector spaces; however, for now, it is enough to witness

the utility of the matrix representation in the context of linear transformations of real n-space.

Example 3.1.9. We will determine in this example whether the function T : R3 → R3 defined

by T (x, y, z) = (y, x − y + z, x) is a linear transformation. Based on intuition, at a glance, we are

inclined to believe that T is a linear transformation because each component of its image is a linear

function of x, y, and z. Concretely, we may determine the matrix representation as follows.

T (x, y, z) =

 y

x− y + z

x

 =

01
1

x+

 1

−1

0

y +
01
0

z =

0 1 0

1 −1 1

1 0 0

xy
z


Consequently we conclude that T is a linear transformation with the above matrix representation.

Example 3.1.10. Let us next illustrate how to determine a formula for the image a linear trans-

formation T : Rn → Rm by computing the matrix representation of T according to the images of

the standard basis vectors e1, e2, . . . , en of real n-space under T. Explicitly, let us assume that

T (1, 0) = (1, 3, 5) and T (0, 1) = (2, 4, 6)

so that T : R2 → R3. Every vector v in real 2-space can be written as a linear combination of [1, 0]

and [0, 1] according to the fact that v = [x, y] = [x, 0] + [0, y] = x[1, 0] + y[0, 1], hence we find that

T (v) = T (x[1, 0] + y[0, 1]) = xT (1, 0) + yT (0, 1) =

13
5

x+

24
6

y =

1 2

3 4

5 6

[
x

y

]
.
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Consequently, the matrix representation of T is provided by the above real 3 × 2 matrix, and the

formula for the image of a vector v = [x, y] under T is given by T (x, y) = (x+2y, 3x+4y, 5x+6y).

Example 3.1.11. On the other hand, it is possible to determine a formula for the image a linear

transformation T : Rn → Rm by computing the matrix representation of T according to the images

of any linearly independent vectors v1,v2, . . . ,vn of real n-space under T. Concretely, suppose that

T (1, 1, 0) = (1, 0, 1) and T (1, 0, 1) = (0, 2, 2) and T (0, 1, 1) = (−1, 2, 1)

so that T : R3 → R3. Every vector v = [x, y, z] in real 3-space can be written as a linear combination

of [1, 1, 0], [1, 0, 1], and [0, 1, 1] because these vectors are linearly independent: indeed, to determine

the coefficients a, b, and c of [x, y, z] with respect to the basis vectors [1, 1, 0], [1, 0, 1], and [0, 1, 1], it

suffices to solve the following 3×3 matrix equation using Gaussian Elimination or matrix inversion.1 1 0

1 0 1

0 1 1

ab
c

 =

xy
z


Using Gaussian Elimination, we reduce an augmented matrix to reduced row echelon form.1 1 0 x

1 0 1 y

0 1 1 z

 (1.)∼

1 1 0 x

0 −1 1 y − x

0 1 1 z

 (2.)∼

1 1 0 x

0 −1 1 y − x

0 0 2 z + y − x

 (3.)∼

1 0 0 1
2
(x+ y − z)

0 1 0 1
2
(z − y + x)

0 0 1 1
2
(z + y − x)


(1.) We employed the elementary row operation R2 −R1 7→ R2.

(2.) We employed the elementary row operation R3 +R2 7→ R3.

(3.) We employed the elementary row operations 1
2
R3 7→ R3, −R2+R3 7→ R2, and R1−R2 7→ R1.

Considering the rows of the above augmented matrix as the formula for T, we conclude that

T (x, y, z) =

(
1

2
x+

1

2
y − 1

2
z,

1

2
x− 1

2
y +

1

2
z,−1

2
x+

1

2
y +

1

2
z

)
.

Equivalently, our above computation yields the matrix representation of T since we have thatab
c

 =

 1
2

1
2

−1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

xy
z

.
Considering the intimate relationship between a linear transformation T of real n-space and its

matrix representation by a real m × n matrix A, it is not surprising that the analogy between a

linear transformation and its matrix representation gives rise to the following important notions.

Definition 3.1.12. Given any positive integer n, we say that a linear transformation T : Rn → Rn is

invertible if and only if the standard matrix representation A of T is invertible. Explicitly, we define

the inverse transformation of an invertible linear transformation T as the linear transformation

T−1 : Rn → Rn represented by the matrix inverse A−1 of the real n× n matrix A.
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Example 3.1.13. Each of the linear transformations of Examples 3.1.4, 3.1.9, and 3.1.11 is invert-

ible because their matrix representations are invertible; the linear transformations of Examples 3.1.5

and 3.1.10 are not invertible because these transformations are not represented by square matrices.

Definition 3.1.14. Given any positive integerm and n and any linear transformation T : Rn → Rm,

1.) the range of T consists of all vectors in Rm that are the image of some vector in Rn, i.e.,

range(T ) = {w ∈ Rm | w = T (v) for some vector v ∈ Rn} and

2.) the kernel of T consists of all vectors in Rn whose image in Rm is the zero vector, i.e.,

ker(T ) = {v ∈ Rn | T (v) = 0}.

Crucially, if T : Rn → Rm admits a real m×n matrix representation A, the range of T is the column

space of A and the kernel of T is the null space of A, i.e., range(T ) = col(A) and ker(T ) = null(A).

Consequently, the range and kernel of a linear transformation are subspaces of real n-space, and we

may therefore define the rank and nullity of a linear transformation according to the formulae

rank(T ) = rank(A) and nullity(T ) = nullity(A).

By the Rank Equation for A, we obtain the following identity for the linear transformation T.

rank(T ) + nullity(T ) = #(columns of the matrix representation A)

Example 3.1.15. Each of the linear transformations of Examples 3.1.4, 3.1.9, and 3.1.11 has rank

equal to the number of columns of its matrix representation by Corollary 1.8.13 because their matrix

representations are invertible, hence the nullity of each transformation is zero. Likewise, the linear

transformations of Examples 3.1.5 and 3.1.10 have rank equal to the number of columns of their

matrix representations because their matrix representations have as many pivots as columns.

3.2 Vector Spaces

Going forward, we will formally refer to a collection of like objects (such as real m×n matrices) as

a set; the objects of a set are called elements or members. We will use the symbol ∈ to denote

set membership, i.e., we write that s ∈ S if and only if s is an element of the set S.

Example 3.2.1. Consider the set S that consists of the first five positive integers 1, 2, 3, 4, and

5. We note that the elements of S are precisely the integers 1, 2, 3, 4, and 5, hence in particular,

we may write that 1 ∈ S, 2 ∈ S, and so on for each of the remaining three integers. We say in

this case that S is a finite set because it has finitely many members. We use curly braces to

denote a finite set by its elements, hence we have that S = {1, 2, 3, 4, 5}. One thing to notice is that

the arrangement of the elements of S does not matter because S only keeps track of what objects

belong to it. Likewise, the number of times an element of S appears in the set S does not matter.

Explicitly, it is true that S = {1, 2, 3, 4, 5} = {2, 4, 1, 3, 5} = {2, 4, 2, 1, 2, 3, 2, 5}; however, it is false
that S = {0, 1, 2, 3, 4, 5} because the set {0, 1, 2, 3, 4, 5} has the non-negative integer 0 as a member.
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Example 3.2.2. Often, we will consider sets consisting of infinitely many elements; we call these

infinite sets. Clearly, it is not possible to list the infinitely many elements of such a set, hence we

turn to the so-called set-builder notation to describe the elements of an infinite set. For instance,

the set of real numbers R is an infinite set; its elements are simply real numbers, so in set-builder

notation, we write R = {x | x is a real number}, and we read this as, “R is the set of all elements

x such that x is a real number.” Explicitly, in set-builder notation, we may describe a set S as

S = {the objects of S | the requirement for set membership in S}.

Back to our example of the real numbers, the objects in R are denoted by x, and the requirement

for set membership in R is that x is a real number. Put another way, in set-builder notation for a

set S, the objects of the set S come first; then, we place a vertical bar | to signify the phrase “such

that”; and finally, we list the condition under which an object belongs to the set S in question.

Example 3.2.3. Consider the collection Rm×n of realm×nmatrices. We note that this is an infinite

set whose set membership condition can be expressed as A ∈ Rm×n if and only if A is a real m× n

matrix. Consequently, in set-builder notation, we have that Rm×n = {A | A is a real m×n matrix}.

Example 3.2.4. Consider the collection R[x] of real polynomials in indeterminate x. We note that

this is an infinite set whose set membership condition can be expressed as p(x) ∈ R[x] if and only

if p(x) is a real polynomial in indeterminate x. Consequently, in set-builder notation, we have that

R[x] = {p(x) | p(x) is a real polynomial in indeterminate x}.

One other way to realize this set in set-builder notation is to notice that every real polynomial in

indeterminate x can be written as anx
n + · · ·+ a1x+ a0 for some non-negative integer n and some

real numbers an, . . . , a1, a0. Consequently, under this identification, we may also write that

R[x] = {anxn + · · ·+ a1x+ a0 | n is a non-negative integer and an, . . . , a1, a0 are real numbers}.

Back in Example 1.3.4, we referred to any (real) 1×n matrix as a 1×n row vector. Our objective

throughout this section is to demonstrate that the vector terminology can be applied much more

broadly than simply in the scope of matrices. We begin by making the following definition.

Definition 3.2.5. We say that a pair (V,+) is a (real) vector space if the following hold.

1.) (Closure Under Addition) We have that u+ v ∈ V for any pair of elements u,v ∈ V.

2.) (Associativity of Addition) We have that (u+ v) +w = u+ (v +w) for all u,v,w ∈ V.

3.) (Commutativity of Addition) We have that u+ v = v + u for any pair of elements u,v ∈ V.

4.) (Additive Identity) There exists an element 0V ∈ V such that v + 0V = v for all v ∈ V.

5.) (Additive Inverse) For any element v ∈ V, we have that v + (−v) = 0V for some −v ∈ V.

6.) (Closure Under Scalar Multiplication) We have that αv ∈ V for all (real) scalars α and v ∈ V.

7.) (Multiplicative Identity) We have that 1v = v for each element v ∈ V.
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8.) (Homogeneity) We have that α(βv) = (αβ)v for all (real) scalars α and β and elements v ∈ V.

9.) (Distributive Law I) We have that α(u+ v) = αu+ αv for all (real) scalars α and u,v ∈ V.

10.) (Distributive Law II) We have that (α+ β)u = αv+ βv for all (real) scalars α, β, and v ∈ V.

We will henceforth refer to the elements v of any vector space V as (real) vectors.

Combined, the first five properties of Definition 3.2.5 ensure that any vector space V constitutes

an abelian group with respect to the particular addition defined on its elements. Group theory is

an essential branch of study in modern algebra, but we will not concern ourselves with their study

here; however, we will come to find that different notions of addition are required for different vector

spaces, e.g., the familiar addition of vectors in real n-space, addition of (real) m× n matrices, and

addition of real polynomials of degree ≤ n for some non-negative integer n. Our next proposition

confirms the fact (we have taken for granted) that Rn forms a real n-dimensional vector space.

Proposition 3.2.6. Real n-space Rn forms a real vector space of dimension n.

Proof. We define addition of points in real n-space componentwise by

[x1, x2, . . . , xn] + [y1, y2, . . . , yn] = [x1 + y1, x2 + y2, . . . , xn + yn].

Considering that addition of real numbers constitutes an associative and commutative binary op-

eration on the real numbers, the first three conditions of Definition 3.2.5 are satisfied. Even more,

the zero vector in Rn is the n-tuple 0 = [0, 0, . . . , 0], and for any real n-tuple [x1, x2, . . . , xn], we

have that −[x1, x2, . . . , xn] = [−x1,−x2, . . . ,−xn]. We conclude that the fourth and fifth conditions

of the definition hold, hence we may turn our attention to scalar multiplication in Rn. We define

α[x1, x2, . . . , xn] = [αx1, αx2, . . . , αxn] for any real number α and any real n-tuple [x1, x2, . . . , xn].

Considering that multiplication of real numbers constitutes an associative, commutative, and dis-

tributive binary operation on the real numbers, it follows that Rn is a real vector space. Last, the

dimension of Rn is n since the standard basis of Rn consists of the vectors ei whose ith coordinate

is 1 and whose other coordinates are 0, i.e., e1 = [1, 0, . . . , 0], e2 = [0, 1, . . . , 0], and so on.

Our next example illustrates that the collection of real m×n matrices forms a real vector space.

Example 3.2.7. Consider any positive integers m and n. We denote by Rm×n the collection of all

real m× n matrices. Observe that the following properties hold, hence Rm×n is a real vector space.

1.) By definition, for any pair of m×n matrices A and B, the matrix sum A+B is the real m×n

matrix whose (i, j)th entry is the sum of the (i, j)th entries of A and B.

2.) By definition, matrix addition is associative because addition of real numbers is associative.

3.) Likewise, matrix addition is commutative because addition of real numbers is commutative.

4.) By Example 1.3.6, the m × n zero matrix Om×n is the unique real m × n matrix with the

property that A+Om×n = A for all real m× n matrices A.
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5.) By Example 1.3.13, for every real m × n matrix A, there exists a unique real m × n matrix

−A such that A+(−A) = Om×n for the m×n zero matrix Om×n. Explicitly, −A is the m×n

matrix whose (i, j)th entry is the (i, j)th entry of A with the opposite sign.

6.) By the paragraph preceding Example 1.3.13, if A is a real m × n matrix, then we have that

cA is the real m× n matrix whose (i, j)th entry is c times the (i, j)th entry of A.

7.) Likewise, if A is a real m× n matrix, then we have that 1A = A.

8.) Even more, if A is a real m× n matrix, then c(dA) = (cd)A for all real numbers c and d.

9.) By definition of matrix addition and the paragraph preceding Example 1.3.13, we have that

c(A+B) = cA+ cB for all real numbers c and all real m× n matrices A and B.

10.) Last, by the paragraph preceding Example 1.3.13, we have that (c + d)A = cA + dA for all

real numbers c and d and all real m× n matrices A.

Example 3.2.8. Consider the collection F (R,R) of real functions f : R → R. We may define

function addition so that if f : R → R and g : R → R are any functions, then f + g is the function

satisfying (f + g)(x) = f(x) + g(x) for all real numbers x, and we may define scalar multiplication

so that (αf)(x) = αf(x). Observe that the following hold, hence F (R,R) is a real vector space.

1.) Given any functions f : R → R and g : R → R, the function f + g sends a real number x to

the real number f(x) + g(x). Consequently, we have that f + g ∈ F (R,R).

2.) By definition, function addition is associative because addition of real numbers is associative.

3.) Likewise, function addition is commutative because addition of real numbers is commutative.

4.) Consider the function O : R → R defined by O(x) = 0 for all real numbers x. Given any

function f : R → R, we have that (f + O)(x) = f(x) + O(x) + f(x) + 0 = f(x) for all real

numbers x. We conclude therefore that f +O = f, i.e., f +O and f are the same function.

5.) Given any function f : R → R, we may define the function −f : R → R by (−f)(x) = −f(x).

Observe that (f+(−f))(x) = f(x)−f(x) = 0 = O(x) for all real numbers x and f+(−f) = O.

6.) Given any function f : R → R and any real number α, it holds that (αf)(x) = αf(x) is a real

number for all real numbers x, from which it follows that αf ∈ F (R,R).

7.) Given any function f : R → R, we have that (1f)(x) = 1f(x) = f(x) for all real numbers x.

8.) Given any function f : R → R, we have that α(βf) = (αβ)f for all real numbers α and β:

indeed, we have that (α(βf))(x) = α(βf)(x) = (αβ)f(x) for all real numbers x.

9.) Given any functions f : R → R and g : R → R, we have that α(f + g) = αf + αg for all real

numbers α because it holds that α(f+g)(x) = α[f(x)+g(x)] = αf(x)+αg(x) = (αf+αg)(x).

10.) Given any function f : R → R, we have (α + β)f = αf + βf for all real numbers α and β

because it holds that ((α + β)f)(x) = (α + β)f(x) = αf(x) + βf(x) = (αf + βf)(x).
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Given any vector 0V of a vector space V satisfying property (4.) of Definition 3.2.5, we say that

0V is a zero vector. We demonstrate that a vector space V has one and only one zero vector.

Proposition 3.2.9. Given any vector space (V,+), let 0V be a zero vector of V.

1.) Given any vector u ∈ V satisfying that u + v = v for every vector v ∈ V, it must hold that

u = 0V . Consequently, the zero vector of a vector space is unique.

2.) We have that 0v = 0V for all vectors v ∈ V.

Proof. (1.) Observe that if u is any vector of V with the property that u+ v = v for every vector

v of V, then it holds u + 0V = u by definition of a zero vector 0V . Conversely, we have that

u+ 0V = 0V by assumption. We conclude therefore that u = u+ 0V = 0V so that u = 0V .

(2.) Given any vector v ∈ V, we obtain a vector 0v ∈ V satisfying that 0v = (0+0)v = 0v+0v.

Consequently, by properties (2.) and (5.) of Definition 3.2.5, there exists a vector −0v of V such

that 0v = 0v + 0V = 0v + [0v + (−0v)] = (0v + 0v) + (−0v) = 0v + (−0v) = 0V .

Generally, throughout all of mathematics, one of the primary means of classifying an object is to

study its subobjects. Given any vector space V, we say that a subset W of V is a vector subspace

of V (or simply a subspace of V ) if the ten properties of Definition 3.2.5 hold for W with respect

to the addition and scalar multiplication of V. We provide next a short criterion for subspaces.

Proposition 3.2.10 (Three-Step Subspace Test). Given any subset W of a vector space (V,+), we

have that (W,+) is a vector subspace of V if and only if the following three properties hold.

1.) We have that 0V is an element of W.

2.) We have that v +w is an element of W for any pair of vectors v,w ∈ W.

3.) We have that αw is an element of W for all scalars α and all vectors w ∈ W.

Proof. Certainly, if W is a vector subspace of V, then by Definition 3.2.5, it satisfies the second and

third properties listed above. Even more, we may consider the zero vector 0W of W. Considering

that W is a subset of V, we may view 0W as an element of V so that 0W + 0W = 0W = 0W + 0V .

Cancelling 0W from both sides of this identity yields that 0W = 0V , as desired.

Conversely, we will demonstrate that if W is any subset of a vector space V that satisfies the

three properties listed above, then it must satisfy all ten properties of Definition 3.2.5. Considering

that W is a subset of V, it satisfies properties (2.), (3.), and (7.) through (10.); it satisfies properties

(1.), (4.), and (6.) by assumption; hence it suffices to prove that it satisfies property (5.). By the

third property above, we have that −w is an element of W for all vectors w ∈ W ; then, by the

second property above, we have that w+(−w) is an element ofW that satisfies w+(−w) = 0V .

Example 3.2.11. Consider the real vector space Rm×n of real m×n matrices. Consider the subset

W = {A ∈ Rm×n | the first row of A is zero}. Observe that the m× n zero matrix Om×n lies in W

because the first row of Om×n is zero; the sum of any matrices A and B of W lies in W because the

first row of A + B is the sum of the first row of A and the first row of B, and both of these rows

are zero; and the scalar multiple cA of any matrix A ∈ W lies in W for all real numbers c because

the first row of cA is c times the first row of A, and this is zero because the first row of A is zero.

By the Three-Step Subspace Test, we have that W is a real vector subspace of Rm×n.
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Example 3.2.12. Consider the real vector space Rn×n of real n× n matrices. Consider the subset

W = {A ∈ Rn×n | A is symmetric}. Observe that the n× n zero matrix On×n lies in W ; the sum of

any matrices A and B of W lies in W because (A+B)T = AT +BT by Proposition 1.3.14; and the

scalar multiple cA lies in W for all real numbers c by [Lan86, Exercise 6] on page 47. Consequently,

we conclude that W is a real vector subspace of Rn×n by the Three-Step Subspace Test.

Example 3.2.13. Consider the real vector space F (R,R) of functions f : R → R and its subset

C1(R) of functions f : R → R such that f ′ is continuous. Clearly, the zero function O : R → R
is continuous. Likewise, the sum of continuous functions is a continuous function, hence if f ′ and

g′ are continuous, then (f + g)′ = f ′ + g′ is continuous. Last, the scalar multiple of a continuous

function is continuous, hence if f ′ is continuous, then (αf)′ = αf ′ is continuous for all real numbers

α. We conclude that C1(R) is a real vector subspace of F (R,R) by the Three-Step Subspace Test.

Example 3.2.14. Consider the real vector space C1(R) of functions f : R → R such that f ′ is

continuous. Consider the set W = {f ∈ C1(R) | f(0) = 0}. Clearly, the zero function O : R → R
lies in W because it satisfies that O(0) = 0; the sum of any functions f and g of W lies in W

because we have that (f + g)(0) = f(0)+ g(0) = 0+0 = 0; and the scalar multiple αf of a function

f ∈ W satisfies that (αf)(0) = αf(0) = α · 0 = 0, so it must lie in W for all real numbers α. We

conclude that W is a real vector subspace of C1(R) by the Three-Step Subspace Test.

Example 3.2.15. Consider the real vector space Rn×n of real n× n matrices. Consider the subset

W = {A ∈ Rn×n | A is invertible}. Observe that the n×n zero matrix On×n is not invertible, hence

it does not lie in W. By the Three-Step Subspace Test, we conclude that W is not a vector subspace

of Rn×n. Even more, the subset W ′ = {A ∈ Rn×n | A is not invertible} does not constitute a vector

subspace of V : all though the n× n zero matrix Om×n lies in W ′, this set does not satisfy the first

property of Definition 3.2.5 because the n×n identity matrix is the sum of non-invertible matrices.

Using the Three-Step Subspace Test, we furnish even shorter characterizations of a subspace.

Proposition 3.2.16 (Two-Step Subspace Test). Given any nonempty subset W of a vector space

(V,+), we have that W is a vector subspace of V if and only if the following two properties hold.

1.) We have that v +w is an element of W for any pair of vectors v,w ∈ W.

2.) We have that αw is an element of W for all scalars α and all vectors w ∈ W.

Proof. By the Three-Step Subspace Test, if W is a vector subspace of V, then these conditions hold.

Conversely, if the second condition above holds, then it follows that −w is an element of W for all

elements w of W. Likewise, if the first condition holds, then by assumption that W is nonempty, we

have that 0V = w + (−w) is an element of W ; we are done by the Three-Step Subspace Test.

Proposition 3.2.17 (One-Step Subspace Test). If W is any nonempty subset of a vector space V,

then W is a subspace of V if and only if αv+ βw ∈ W for any vectors v,w ∈ W and scalars α, β.

Proof. By the Two-Step Subspace Test, if W is a vector subspace of V, then these conditions must

hold. Conversely, if αv + βw lies in W for any vectors v,w ∈ W and any scalars α and β, then

v+w = 1v+ 1w ∈ W and αw = 0v+ αw ∈ W ; we are done by the Two-Step Subspace Test.

We will distinguish in our next propositions two very important vector subspaces.
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Proposition 3.2.18. Consider any vector space (V,+) with a pair of vector subspaces U and W.

1.) Let U +W denote the collection of all vectors u+w such that u is a vector of U and w is a

vector of W. We have that U +W is a vector subspace of V that contains both U and W.

2.) Let U ∩W denote the collection of all vectors v such that v is a vector of both U and W. We

have that U ∩W is a vector subspace of V contained in both U and W.

Proof. We leave this as an exercise for the reader to prove by the Three-Step Subspace Test.

3.3 Chapter Overview

This section is currently under construction.
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